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Abstract 
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Implications for Climate Change 
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Chair of the Supervisory Committee: 

Donald McKenzie 

School of Environmental and Forest Sciences 

 

There has been a significant increase in fire activity in the western United States over the past 

two decades, attributed to climate change, but much of the data that support this attribution are 

from fires in frequent, low-severity fire regimes.  Recent increases in fires with mixed- and high-

severity fire regimes of the Pacific Northwest have highlighted the importance of collecting 

baseline data and understanding fire-climate interactions in forests with less frequent fire to 

inform research and guide management.  My dissertation focuses on these objectives in three 

chapters.  In the first chapter, I characterized historical fire frequency and severity over 400 years 

in a dry, mixed conifer forest in Stehekin, Lake Chelan National Recreation Area in Washington 

state, and used ANOVA and GLM to identify the bottom-up controls on fire in this mountainous 

terrain.  I found that fire frequency was high before the fire suppression era (31-year mean fire-



 

interval), increased significantly during the non-Indigenous settlement period, and was impacted 

by fire suppression (51-year mean fire interval following suppression).  Both fire frequency and 

severity are controlled by a complex interaction among topography, site, and environmental 

variables, which could increase resilience to climate change.  In the second chapter, I classified 

and mapped fuel characteristics (fuelbeds) and fire potentials across a low-frequency, high-

severity fire regime (Mount Rainier National Park, (the Park)) using a combination of field data, 

LiDAR, and climate data.  Using this examination at high-resolution, I identified higher fuel 

loadings and fire potentials on the west side of the Park that could eventually indicate greater 

impacts and changes there, although the effects of climate change are more certain and will come 

sooner on the east side.  In the last chapter, I reviewed bottom-up controls (topography and fuels) 

on fire frequency across the continuum of moist, high-severity fire regimes to dry, low-severity 

fire regimes from the west side of the Olympic Mountains to the east side of the north and central 

Cascades.  Using this examination, I identify and describe a corresponding “fuel management 

continuum” to inform wildfire and forest management strategies. 
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Introduction 

The size and frequency of wildfires are increasing throughout the Pacific Northwest in 

response to climate change.  Land managers are facing the difficult challenge of managing fires 

in areas where vegetation is not fire adapted and fires were uncommon, historically.  Researchers 

are also facing new challenges to predict and project the effects of climate change in a rapidly 

changing environment with little empirical data and uncertain and complex climate-fire 

interactions.  This dissertation is intended to provide base-line data on fire frequency and fuels in 

areas where this information is lacking, to improve fire projections, explore innovative research 

techniques, and guide and inspire new strategies for managing fire with climate change.   

The first chapter is a fire history study of a conifer forest with a mixed-severity fire 

regime on the eastern slopes of the northern Cascades, where vegetation assemblages and fire 

effects are on a gradient between moist and dry climate, no analogous community exists, and 

proactive fire management is imperative to protect visitors and ecosystem services in a national 

park.  I used a combination of fire scar data and stand ages to quantify fire frequency and 

severity, and I identified the drivers of fire regime characteristics to aid in adapting fire 

management strategies for climate change.   

The second chapter is focused on characterizing fuels in a high-severity fire regime on 

the west side of the Cascade range, where until recently, there was little need to quantify fuel 

loads beyond a coarse resolution since large fires only occurred every 400+ years.  I used a 

combination of field, LiDAR and environmental data to map surface and canopy fuels (fuelbeds) 

and their fire potentials at high resolution across Mount Rainier National Park.  This analysis 

enabled me to identify fuelbeds and areas of the Park most vulnerable to climate change and to 

provide strategies for fire management.  
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The third chapter merges the information gained in chapters one and two on bottom-up 

controls on fire frequency and severity, and fuel load properties across east and west side forests, 

to propose a strategy for managing fuels and fire potential across the old-growth forests of the 

Olympic and Cascade Mountains.  This chapter takes a broader view across the Pacific 

Northwest emphasizing the important differences between fire regimes and their drivers.   

Although these three chapters are different and stand alone in their contribution to fire 

ecology in the Pacific Northwest, they all share the common theme of providing information and 

assistance to forest managers as they navigate the challenges of fire management with respect to 

climate change.  As a fire ecologist in the national park service, and as a researcher, the 

importance of providing accessible and applicable research is critical to me.  I hope that in 

reading my dissertation, you will be encouraged and empowered to bridge the gap between 

research and management as I strive to do.       
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Chapter 1.  A checkered past: the history of a mixed-severity fire regime on a mountain 

landscape in the Cascade Range, Stehekin, Washington, USA 

 

1.1 Abstract 

I used a combination of fire scars, forest structure, and stand age to characterize the 

historical fire frequency and range of fire severity for a complex and variable mixed-conifer 

forest in Stehekin, Lake Chelan National Recreation Area.  I collected and cross-dated a total of 

264 fire scars in twenty-eight 5-hectare fire history plots throughout the Stehekin watershed.  I 

identified 109 different fire years over the 462-year sampling period (1558 – 2020), comprising a 

mean historical composite fire interval (CFI) of 31 years, and found a significant increase in fire 

frequency during the settlement period, and lengthening of CFI during the fire suppression era.  

No significant environmental predictors of the historical CFI were identified through linear 

regression, however ANOVA revealed that CFI varied in response to a complex interaction 

among location, presence of ponderosa pine, and SW/NE-facing slopes.  Using a proxy for fire 

severity based on the proportion of fire-scarred trees to total trees per hectare, I found a wide 

range of fire severities over various stand densities (11% to 0.6% of trees scarred on plots with 

lowest and highest fire severities, respectively).  Slopes ranged from 21% to 65%, with lowest 

fire severities on steeper slopes, and on NE-facing aspects in interaction with slope.  The 

significant interactions between topographic variables and other local factors with respect to CFI 

and fire severity verify the influence of bottom-up controls in this rugged mountainous terrain.  I 

determined a baseline range of fire frequencies and severities dependent upon complex 

interactions between environmental predictors.  The variability and complexity inherent to 

mixed-severity fire regimes may provide greater resiliency to climate change by increasing the 
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diversity of post-fire effects.   

 

1.2 Introduction 

Conifer forests on the east slopes of the northern Cascades are spatially complex, 

consisting of a mosaic of stand ages and fire scars typical of the mixed-severity regime (Agee 

2005, Hessburg et al 2007, Halofsky et al 2011).  The remote town of Stehekin in Lake Chelan 

National Recreation Area, of the North Cascades National Park Service Complex, is in a mixed-

conifer forest, a popular summer tourist destination subject to a mixed-severity fire regime that 

has experienced 117 natural ignitions that have burned over 4,250 hectares within the past three 

decades (USDI BLM 2020).  Forest managers and researchers need quantifiable baseline fire 

frequency and severity information to project and prepare for climate-altered fire regimes before 

current stand histories are erased by the next stand-replacing fires.   

The Douglas-fir (Psuedotsuga menziesii var. menziesii) / ponderosa pine (Pinus 

ponderosa var. ponderosa) forests of Stehekin are dominated by more mesic vegetation and soil 

moistures than stands farther south along Lake Chelan, though drier than Douglas-fir dominated 

stands to the north.  Although the vegetation in this area is unique due to its location in the 

ecotone between more mesic and drier sites, this examination is applicable to mixed-severity 

forests throughout the Pacific Northwest, as well as to studies of fire frequency and severity in 

mountainous terrain.  Not only will it provide an in-depth study on historical fire frequency and 

severity where information was lacking, but in so doing, it increases our knowledge of another 

location along the continuum from moist to dry forests across the Cascade Range.   

My study is the first empirically based examination of fire history for this area, 

quantifying fire history for the past 400+ years with fire dates ranging from 1596 to 2015.  I used 
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fire scar data, stand ages, and forest structure data to identify fire intervals before and after non-

Indigenous settlement and fire suppression, characterized the range of fire severities, and 

examined the environmental factors associated with different fire frequencies and severities.   

 

1.3 Literature Review  

There have been several fire-history studies in the northern Cascades, but none is 

transferable to the mixed-severity fire regime associated with the Douglas-fir / ponderosa pine 

forests of Stehekin.  Most existing studies focus on low-severity fire frequency as derived from 

fire-scar data (e.g. Everett et al. 2000, Hessl et al. 2004, Wright and Agee 2004), or higher-

severity fires using stand reconstructions (Harrod et al. 1999) or lake-sediment cores (Prichard 

2003).  A fire history at Desolation Peak (Agee et al. 1986) does examine both low- and high-

severity fires using fire-scar data and stand reconstructions, but the moister environment and 

different forest composition (western hemlock / Douglas-fir at low elevations to Pacific silver fir 

/ subalpine fir at high elevations) of the Desolation Peak study limit its relevance to fire 

frequency in Stehekin.    

The differences between the Desolation Peak study and my own exemplify the broad 

scope encompassed by mixed-severity fire regimes.  Fire scientists recognize the need to 

characterize more precisely the ratios of high- and low-severity fire within the mixed-severity 

regime, where every fire that is neither stand-replacing nor low-severity is lumped into one 

category (Agee 2005, Hessburg et al. 2007).  I assumed that the Douglas-fir / ponderosa pine 

forests of Stehekin have always burned with mixed severity, given the ecology of the area (Agee, 

personal communication, 2005), but did not know if fire suppression had altered fuels enough to 
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increase the severity of current fires, or if moderate- and high-severity fires were more common 

historically than previously thought (Hessburg et al. 2007).   

There is a resurgence of interest in defining historical fire regimes, especially within the 

mixed-severity regime.  Stand reconstructions of Douglas-fir forests on both sides of the Cascade 

Range of Oregon (Weisberg 2004, Poage et al. 2009) acknowledge the importance and 

prevalence of mixed-severity fire in Douglas-fir forests.  Poage et al. (2009) identified four 

distinct age structures of Douglas-fir in 250 old forest sites in western Oregon, each defined 

moderately well by regional climate and fire history, including mixed-severity fire.  Weisberg 

(2004) also identified non-stand-replacing fire as an important factor in western Oregon. 

Other researchers have used fire-scar data to quantify historical fire frequencies, and 

interpreted fire severities from timber records and early aerial photographs (Beaty and Taylor 

2001, Klenner et al. 2008) or stand reconstructions (Fulé et al. 2003, Taylor and Skinner 2003, 

Beaty and Taylor 2008) in mixed-severity fire regimes.  Heyerdahl et al. (2012) combined fire-

scar data and stand reconstructions to identify the historical fire frequency of low-, moderate-, 

and high-severity fires in southern interior British Columbia, Canada.  This approach may be 

most appropriate for identifying fires in mixed-severity regimes given that they experience low-

severity fire recorded by fire scars, and higher-severity fire that kills recorder trees (Hessburg et 

al. 2007).   

Heyerdahl et al. (2012) defined their study area as a mixed-severity regime dominated by 

frequent low-severity fires and interspersed with less common, small high-severity disturbances.  

They did not find aspect to be an important predictor of fire severity along an east-west gradient, 

nor between plots, which they attributed to their small (1,105 hectare) study area.    
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Topography has been shown to exert bottom-up control on fire frequency in low-severity 

fire regimes, whereby fires are smaller and more irregularly shaped (Kellogg et al. 2008, 

McKenzie and Kennedy 2012), likely due to topographic barriers and patchy spatial patterns of 

fuels (McKenzie et al. 2006).  Longer fire-free intervals were also associated with steep terrain 

(Heyerdahl et al. 2001, Iniguez et al. 2008) and north aspects (Beaty and Taylor 2001, Taylor 

and Skinner 2003) in mixed-severity fire regimes.  However, the influence of aspect on fire 

frequency may be scale-dependent, since Iniguez et al. (2008) did not find significant differences 

between aspects at the stand level, even on steep terrain.  They surmised that topographic facets 

were not separated by barriers to fire spread, a requirement Heyerdahl et al. (2001) identified for 

aspects to influence fire frequency.  

The goal of my research is to characterize the historical fire frequency and severity of 

Stehekin using quantifiable measures that can be used as a baseline from which to assess the 

effects of climate change.  My objective is to identify the drivers of fire frequency and severity 

and understand the effects of settlement and fire suppression on the current stand structure and 

composition and how they have affected the baseline historical condition.  These topics have 

been identified as research needs (Agee 2005, Perry et al. 2011, Heyerdahl et al. 2012), and will 

characterize mixed-severity regimes at a finer level of detail than currently exists for Pacific 

Northwest forests.   

 

1.4 Research Questions  

1) What are the mean fire frequencies for the Douglas-fir / ponderosa pine forests of Stehekin?  

2) What are the proportions of low-, moderate-, and high-severity fires? 

3) Have fire frequency and severity varied by topographic or other environmental factors? 
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A further goal is to generate data that inform management activities that increase 

resilience of these forests, and their fire regimes, to climate change. 

 

1.5 Methods 

1.5.1 Study Area   

The study area comprises 4,108 hectares within the Douglas-fir / ponderosa pine forest 

(which ranges from 365 to 1800 meters elevation) surrounding the town of Stehekin in the 

southeastern portion of the North Cascades National Park Service Complex in Lake Chelan 

National Recreation Area.  Fire-history plots were located in areas that were accessible via Park 

trails, game trails, or the lakeshore, and outside areas that have been thinned (Figure 1-1).  In 

most cases, it was not possible to safely traverse beyond a 0.5 km distance of trails due to steep, 

unstable terrain and cliffs. 

 
Figure 1-1.  Map of the study area in Lake Chelan National Recreation Area.  Thirty 5-hectare 

plots were installed in 10 units (labeled in italics) based on topographic features.   
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The town of Stehekin has a long history of human occupation and disturbance.  

Indigenous people lived in this area for thousands of years and regularly burned the forest for 

hunting, gathering, and clearing the land.  The name “Stehekin” originates from a Salishan 

phrase with one of several interpretations being “the way through,” because this area provided 

the best route over the Cascades (personal communication  K. Dicenzo, NPS Archeologist).  The 

Chelan tribe had a village at the south end of Lake Chelan and regularly traveled over the 

Cascades to trade with the Skagit tribes.  Chief Moses and the Chelan tribe were able to delay 

non-Indigenous settlement by negotiating with President Rutherford Hayes to establish the 

“Moses Reservation” in 1879, from the south end of Lake Chelan to the Canadian border, 

including Stehekin.  Only seven years later though, in 1886, the reservation was confiscated, and 

the “Settlement Period” began (e.g., logging, mining, and homesteading) (Caldbick 2012).   

Several accounts from early explorers describe the surrounding mountains alight with 

fire, and oral history provides an account of an especially large fire in 1889 that swept through 

the Stehekin valley (Oliver and Larson 1981, Stone 1983).  The “fire suppression period” began 

in 1908 when the Chelan National Forest was established and remained in effect through 1968 

(Stone 1983, Van Wagtendonk 2007).  Wildfire is still prevalent in the Stehekin watershed, as is 

evident from the North Cascades National Park Service Complex fire atlas, which includes 

perimeters and ignition points for all recorded fires between 1954 and present.   

Fires in the Douglas-fir / ponderosa pine forests of the Stehekin watershed are mixed 

severity, with a complex mosaic of low-, moderate-, and high-severity patches of variable size 

and grain.  The forest mirrors this complexity in variable-sized, even- and mixed-aged stands, 

and scattered fire-scarred trees.  The variability in patch size and fire size may be due to the high 

spatial complexity of both the terrain and vegetation of the northern Cascades, where fire 
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severity and fire spread are influenced by variable fuel moisture patterns (e.g., avalanche chutes, 

talus fields, etc.) (Cansler 2011, McKenzie 2020).  

 

1.5.2 Fire History Plots 

Thirty 5-hectare, circular plots were randomly located within the study area using a fire 

interval sampling approach (Johnson and Gutsell 1994), each within one kilometer from a trail or 

other access point.  The individual plots were grouped by location into 10 “units”.  I did not 

stratify the plots by topographic position because this would have further constrained the 

sampling area, which was already confined to areas that were not northern spotted owl (Strix 

occidentalis caurina) habitat, and that were proximal to trails.  In a field reconnaissance in 2007, 

the 5-hectare plot size was determined to yield a sufficient sampling of fire-scarred trees and yet 

be homogeneous enough in structure to represent a single fire severity.   

The fire-history plots serve several purposes: 1) to collect fire-scarred tree samples 

(wedges) to identify low- and mixed-severity fires, 2) to collect tree cores to identify cohorts of 

trees that established after high-severity fires, and 3) to conduct stand surveys to determine the 

ratio of fire-scarred trees to total tree density as a proxy for fire severity.  The locations of the 

sampling areas for each of these activities are shown in Figure 1-2.  
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Figure 1-2.  Diagram of circular fire-history plot.  Each contains 20 sampling points (brown dots) 

for tree ages.  Three 100-m2 plots (blue squares) located at the first, last, and middle points are 

sampled for structural characteristics.  An inventory of all fire-scarred trees is performed in the 

20-meter band of the sampling spiral (green), comprising 0.94 hectares of each 5-hectare plot.  

Figure not drawn to scale. 
 

Twenty-eight of the 5-hectare plots were surveyed for fire-scarred trees, 98 of which 

were chosen as wedge trees, and had sections cut from their boles to examine for internal scars 

indicative of low- to moderate-severity fires (Arno and Sneck 1977) (Table 1-1).  Wedges could 

not be cut in two of the 30 plots because it was determined that they were in northern spotted owl 

habitat after the plots were inventoried.  Therefore, these plots were included in only the fire 

severity assessment.  All accessible areas within each plot were surveyed for potential wedge 

trees with the goal of collecting up to two samples from live trees, out of a total of four (to six) 

samples per plot.  Each potential wedge tree was examined and photographed, and data were 

collected on both tree characteristics (diameter at breast height (DBH, 1.37 meters height), 

species, position in canopy (emergent, dominant, canopy, subcanopy)) and the local environment 

(slope, aspect, elevation).  The wedge trees were selected after a thorough examination of all 

candidate trees.  Recently dead trees were favored over live trees, and less vigorous live trees 
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were preferred over healthy individuals.  These preferences were determined through discussion 

with the North Cascades National Park Service Complex wilderness committee.   

 

Table 1-1.  Characteristics of trees that had wedges removed: species, numbers of live and dead, 

and their average diameters (DBH). 

Species 
Number  

Live 
DBH (cm) 

Live 
Number 

Dead 
DBH (cm) 

Dead Total Number 

Ponderosa pine 19 83.6 45 80.4 64 

Douglas-fir 12 69.4 22 77.6 34 

Total 31 78.1 67 79.5 98 

Twenty trees were selected systematically along the transect (spiral) that began at a 

random point along the perimeter of the 5-hectare plot and spiraled in towards plot center.  Tree 

cores from the 20 trees (with minimum DBH of 10-cm) were collected at DBH height and 

converted to base-height per species to derive establishment dates, and the same individual tree 

characteristics and local environmental data as collected for wedge trees were collected at these 

points.  Eight plots had topographic barriers (cliffs, steep slopes) or environmental hazards (bees, 

hazard trees) which prevented sampling all 20 points.   

I inventoried all fire-scarred trees along the 20-meter-wide (0.94 hectare) sampling spiral 

in 25 of the 30 plots to derive the proportion of fire-scarred trees to total trees as a proxy for fire 

severity.  This proxy is based on my assumption that there are higher proportions of fire-scarred 

trees to total trees in plots with the lowest fire severity, given that more trees survived burning.  

Additional data were collected to aid in determining this ratio; species and diameter of all live 

and dead trees, including those without fire scars, were recorded on seven of the 20-meter bands, 

and tree density by species was recorded at three 100-m2 subplots along each spiral.  Two 

different scar types were recorded: 1) “cat-face” was used to describe charred, triangular 
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openings at the bases of trees, and 2) “zipper” was used to describe prominent longitudinal ridges 

on charred trees (usually Douglas-fir). 

 

1.5.3 Increment Cores  

Twenty increment cores per spiral were collected, mounted, and sanded as described in 

Stokes and Smiley (1968).  After sample processing, in which some cores were omitted due to 

decay or missing rings, there were 552 cores in total.  Dates of tree establishment were derived 

from the increment cores through ring counts.  All samples were cross-dated using the tree-ring 

width analysis program COFECHA (Holmes 1983) and methods described by Stokes and Smiley 

(1968).  Individual chronologies were developed for each unit using the oldest non-fire-scarred 

trees per plot and cross-dated to a master chronology for Stehekin (Littell et al. 2008) from 

Littell (2015 personal communication).  The cores used to develop each unit chronology had 

COFECHA correlations of 0.30 or greater for each sample.  All cores were taken at DBH height 

and adjusted from breast height age (BHA) to true age (Nigh 1995).  I used an age correction of 

14 years for Douglas-fir and 10 years for ponderosa pine based on comparisons of ages at base 

and breast height, and other local studies (Agee et al. 1986, Wong and Lertzman 2001).  

 

1.5.4 Identifying High-severity Fires 

The establishment dates of trees on the spirals were examined to identify cohorts of 

similar-aged trees that regenerated following high-severity fires that would not have been 

recorded by surviving fire-scarred trees.  I inspected each spiral for the presence of even-aged 

cohorts of six or more trees whose establishment dates occur within 40-year periods without fire 

scars, my criteria for high-severity fire.  This criterion was based on Heyerdahl et al. (2012) who 
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assigned high-severity fire to even-aged cohorts where five or more trees established in a plot 

within a 20-year period, proceeded by at least 30 years during in which no trees established.  I 

lengthened the establishment period to 40 years based on Oliver and Larson (1981) who 

identified peaks in establishment (pulses) of Douglas-fir in Stehekin that occurred 35 to 40 years 

after fires.   

 

1.5.5 Wedge Samples  

Wedge samples were sanded and analyzed under a microscope to identify and date each 

fire scar.  Ring widths were measured, and dates for fires were derived through cross-dating as 

described for the increment core samples and visual matching of fire-scar sequences between 

samples in the same plots.  Scars were considered to have been caused by fire if they originated 

from a charred cat-face or other scar that contained apparent charcoal, or if they were duplicated 

on another wedge or core in the plot with evidence of fire.  Scars that could not be linked to 

direct fire evidence were still considered to be potential fire scars if they corresponded to a 

prominent cohort, and other fire-scarred trees were in the vicinity.  

Twenty-eight of the 98 wedge samples were omitted from the fire-history analysis due to 

the presence of extensive rot or inability to cross-date visually or with COFECHA. The most 

problematic samples were from dead and decaying trees, which often did not contain large 

enough areas of solid wood to identify clear marker rings.  This problem was exacerbated on 

samples with multiple fire scars where ring-width patterns were distorted by the fire scars and 

often included false or missing rings.   

Many of the samples were cross-dated in a three-step process whereby tentative dates 

were derived from COFECHA, these scar dates were re-examined by matching intervals between 
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scars to the most reliable samples, and then re-running any revised sample dates through 

COFECHA again.  The final COFECHA correlation values and methods used to cross-date the 

fire scars are documented and preserved in the sample database, and all samples are preserved in 

the North Cascades National Park curatorial building in Marblemount, Washington.  Despite 

extensive effort to cross-date, some of the wedge samples have less than 0.30 correlation, a 

commonly used minimum value for dendrochronology (Cook and Kairiukstis 1992).  Samples 

from Howard Lake were especially difficult due to the presence of multiple scars on each sample 

that did not match up visually or in COFECHA.  This issue was anticipated given that 

COFECHA yields low correlation values in decades with fire scars on samples (Holmes 1983).  

  

1.5.6 Derivation of Environmental Predictors 

I used the Spatial Analyst tool in ArcGIS to derive mean values for slope, aspect, and 

elevation of each plot from Digital Elevation Models (DEMs) for North Cascades National Park 

Service Complex (Table 1-2).  The mean values for aspect were manually rescaled from zero in 

the northeast (coolest aspect) to one in the southwest (warmest aspect) using a calculation from 

McCune and Keon (2002) to derive the “cosine-aspect” (COS-Asp) for each plot.  Mean values 

for direct incident radiation (DIR) and heat load were also calculated on a spreadsheet using 

equations from McCune and Keon (2002).  The calculation of DIR combines slope, latitude, and 

aspect, whereas heat load uses COS-Asp in place of aspect. 
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Table 1-2. Sources and ranges of environmental predictors used in regression models for 

historical fire frequency and severity. 

Variable Label Source Plot Range  

Slope (percent) Slope DEM 21 – 82 

Aspect Adjusted  COS-Asp Aspect from DEM, adjusted using (1-cos(θ-

45))/2, where θ = aspect   
0 – 1 

Elevation (meters) Elev DEM 403 – 885 

Direct Incident 

Radiation  
DIR Equation using slope, latitude, and aspect 

(McCune & Keon 2002) 
0.1 – 1.0 

Heat Load Heatload Same equation as DIR except COS-Asp 

replaces aspect (McCune & Keon 2002) 
0.1 – 1.0 

 

 

1.5.7 Statistical Analysis of Fire Frequency 

Point fire-return interval (point FRI) estimates, which are calculated by averaging the 

interval lengths between fires on individual tree samples, are likely to over-inflate the fire 

interval because not every fire will scar every tree, and some scars are burned off by more recent 

fires (Agee 1993).  Composite fire intervals (CFI), in which the average interval length is based 

on the combined fire dates from multiple samples within an area (5-hectares in this study), 

reduces the likelihood of missing fires; however, it overestimates the number of individual fires 

if fire dates for the same fire differ among samples.  To prevent overestimation of the number of 

individual fires in plots with low correlation values in COFECHA, fires that were within three 

years of each other within the same plot were assigned the fire date from the sample with the 

highest correlation value for the fire.  Given the high probability of individual point samples not 

recording all fires due to rot, and the conservative approach taken to assign fire dates, I am 

confident in my assumption that the CFI is the most accurate and complete estimate of fire 

frequency per plot.  



17 

The fire history samples were entered into Fire History Analysis and Exploration System 

(FHAES) (Brewer et al. 2016) to build a master fire history chronology for Stehekin.  The mean 

point FRI, and composite intervals for the full sampling period (CFI) and for the time-period 

before non-indigenous settlement in 1886 (historical CFI) were calculated for each plot in 

FHAES.  The Weibull mean probability interval (WMPI), a composite fire interval following a 

negative exponential curve (Agee 1993, Scheiner and Gurevitch 2001), was also calculated for 

each plot.  The point FRI and CFIs were also hand-calculated in excel to examine which plots 

had the greatest effect on the resulting intervals.  Plot 23 in the Rainbow unit was identified as an 

outlier due to lack of sufficient samples and excluded from all the interval calculations.  I 

computed the grand mean CFI for the area with the remaining 27 plots, and the mean historical 

CFI with 23 plots that contained samples with intervals before non-indigenous Settlement.  I also 

calculated CFIs and historical CFIs for each unit.  

I used paired t-tests to analyze the effects of settlement and fire suppression on fire 

frequency (number of fires) and compared fire interval lengths before and after fire suppression.  

The samples were evaluated to confirm that they met the assumptions of t-tests (Ramsey and 

Schafer 2002): 1) quantile plots followed a normal distribution, 2) the dates of each fire were 

identified independently of other fires, 3) the fire samples were collected randomly, and 4) the 

variances were approximately equal before and after settlement and fire suppression.  I 

maintained equal sampling periods on either side of each fire frequency analysis, comparing the 

number of fires for 21 years before and after settlement in 1886, and 59 years before and after 

fire suppression from 1908 to 1968.  For the analysis of fire suppression on fire interval lengths, 

it was not necessary to maintain equal sampling periods because I was interested in the average 

length of the intervals before and after suppression rather than the number of intervals.  I counted 
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the time from the most recent fire within the suppression era to the most recent fire after 1968 as 

the suppression interval.  If there were no fires after 1968, then I used the end of the sampling 

period (2020) as the end of the interval, knowing that the true interval is at least as long.  I could 

not accurately analyze the effects of settlement on interval length because the settlement period 

is shorter than the mean interval length for the plots.  

 

1.5.8 Analysis of Predictors 

I began each analysis of fire frequency and severity by using graphical methods for data 

exploration and model testing appropriate for ecological data (e.g., Ramsey and Schafer 2002, 

Scheiner and Gurevitch 2001).  I used R statistical software (R Core Team 2021) to construct a 

matrix of scatterplots, rescale the data, and add log-transformed variables to fit the preliminary 

models and meet the assumptions of linear models (Harrell 2015).  I examined the distribution of 

the log-transformed response and predictor variables and confirmed that they were normally 

distributed.  Plot 23 in the Rainbow unit was identified as an outlier and removed from the fire 

frequency analysis due to low sample size and the presence of additional fires that could not be 

definitively verified.  Similarly, Plot 13 in the Agnes unit was identified as an outlier and 

eliminated from the fire severity analysis due to questionable “zipper” scars reported on 

Douglas-firs that may not have been fire-caused, since no other fire evidence was present.   

I used Ordinary Least Squares (OLS) linear regression to identify potential environmental 

predictors of historical (before non-indigenous settlement) fire frequency with the model:  

Historical CFI = β(Slope) + β(Aspect) + β(Elevation) + β (DIR) + β (Heat load)  
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A secondary analysis to test the influence of categorical predictors (presence/absence of 

ponderosa pine, NE/SW-facing plot locations, plots grouped by unit) on fire frequency was 

performed using ANOVA to test the model:  

CFI = β(PIPO) + β(SW-face) + β(Unit) + ϵ 

 I used a General Linear Model (GLM) “quasi-binomial”, which is appropriate for 

proportional response variables, to determine the influence of environmental factors on fire 

severity. In GLMs, the goodness of fit of the model is assessed using the proportional reduction 

in deviance (PRD) rather than R-squared. I tested the model:  

Scarred / Total Trees = β(Slope) + β(Aspect) + β(Elevation) + β (DIR) +β (Heat load)  

  

1.6 Results 

1.6.1 Historical Fire Frequency 

I collected and cross-dated a total of 264 fire scars from 78 trees in 28 fire-history plots 

throughout the Stehekin watershed (Figure 1-3).  I identified 109 different fire years over the 

462-year sampling period (1558 – 2020), which is just under one fire every four years.  The 

Stehekin fire chart has an average of 4 scars per sample (tree or core), whereas the Stehekin 

composite fire history chart (Figure 1-4) consolidates all the fires within each plot into one 

record, with an average of 7 fires scars on each.  

I added three recent wildfires (2006 Flick Creek, 2010 Rainbow and 2015 Wolverine 

fires) that burned through eight of the plots, extending the interval calculation period from 2009 

to 2015, and the sampling-interval period to 2020.  The 2837-hectare Flick Creek fire scarred 

trees in five of the six plots in which it burned (confirming that my sampling schema was 
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effective at capturing large fires) and was added to the one plot in which it was known to have 

burned but was not recorded.    

 

 
 

Figure 1-3.  The Stehekin fire chart contains 78 individual tree samples with a total of 264 fire 

scars recording 109 different fire dates during the sampling period between 1558 and 2020.  

Three recent fires (2006, 2010, and 2015) that burned through eight plots are represented by 

rows with the fire dates only.  Samples are ordered from north to south.  Each horizontal line 

shows the fire scars identified on a single tree sample (point).  
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Figure 1-4.  Stehekin composite fire chart using all 28 fire-history plots.  Each horizontal line 

represents a composite of the fires recorded on trees within a 5-hectare plot.  A total of 109 

individual fire dates were recorded on 192 fire scars in the sampling period of 1558 through 

2009.  Three recent fires (2006, 2010, 2015) were added to eight plots, extending the sampling 

period to 2020.   
 

The 1889 fire was recorded in 42% (33 of 78) of the samples and thus served as a 

reference fire for cross-dating (Figure 1-5).  My plots show that this fire, documented by early 

settlers as a “major fire that swept through the (Stehekin) valley” (Stone 1983), burned through 

all the northeastern units (Howard Lake, McGregor, Rainbow, and Boulder).  Prominent fire 

scars cross-date to 1889 in the Agnes and Company units on the west side of the Stehekin River.  

Given that winds and fire spread predominantly eastward and northward from the Company and 

Agnes units (NPS 2010), it is likely that the 1889 fire started on the west side of the Stehekin 

River and spotted across to the northeastern units.  The year 1872, with 10 scars recording fire, 

and the years 1877 and 1896 with seven scars each, were also big fire years.  Most fires, 

however, were recorded by one scar (49 fires), or two scars (30 fires), indicating that they were 

relatively small or were high severity and recorded by only a few legacy trees. 
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Figure 1-5.  Fire index plot for Stehekin.  Blue line shows how many samples are in recording 

status each year (recorder depth), and bars show the percent of scars recorded each year.  The 

year of the 1889 fire is recorded by 33 trees.  1872 (10 scars), 1877 and 1896 (7 scars each) are 

also big fire years.  Purple lines extending beyond graph mark non-Indigenous settlement (1886), 

fire suppression (1908), and post-suppression (1967) eras.  

 
 

1.6.2 Mean Composite Fire Intervals 

The grand mean CFI for Stehekin is 30 years (SD = 8, 27 plots) (outlier plot 23 omitted 

from computation), and the mean historical CFI is 31 years (SD = 11, 23 plots) (Table 1-3).  The 

WMPI is equivalent to the CFI, whereas the point FRI is six years longer (Mean = 36 years, SD 

= 13).  This was partly due to several samples with trees that did not have the minimum two 

scars to define an interval, and therefore could not be included in the calculation.  There were 

also too few intervals per sample to accurately report the historical point FRI for the unit.   

The CFIs per plot ranged from 16 to 44 years, and the historical CFIs had an even wider 

range of variability at the plot level (17 to 55 years).  Mean CFIs at the unit level ranged from 20 

years in the McGregor unit to 33 years at Howard Lake.  Boxplots of the unit CFIs illustrate that 

although the unit CFIs are all within 12 years of each other, they vary widely within that narrow 

timeframe (Figure 1-6).  For example, the range of the CFI for the McGregor plots is completely 

outside of the range of the CFI for the Purple plots. 

  

 

 



23 

Table 1-3.  Composite fire intervals for all years (CFI) and before non-Indigenous settlement 

(Historical CFI) with means and standard deviations (SD) for 10 individual units, and all units 

combined (All-Unit) in the Stehekin watershed.  Number of plots for CFI (C) and Historical (H). 

Plot 23 in Rainbow unit not included due to low sample size.  Number of trees and scars listed 

for CFI.  Weibull median probability interval (WMPI) and the point FRI are comparable to the 

all-unit composite interval.  Not enough intervals (NA) for some Historical CFIs.  Last scars with 

* are from fire records. 

 Plots   

 

CFI 

Historical 

CFI Fire Scars 

Analysis  

Years 

Unit C/H Trees Scars Mean SD Mean SD First Last Begin End 

Howard Lk.  5/5 11 54 33 9 30 8 1596 1969 1558 2020 

Agnes 2/0 6 9 28 13 NA NA 1857 1963 1857 2020 

McGregor 2/2 4 19 20 5 23 4 1760 1929 1710 2020 

Company 2/2 7 26 26 9 25 9 1700 1956 1628 2020 

Rainbow 2/2 7 22 28 8 37 26 1813 2010* 1795 2020 

Boulder 4/3 10 32 31 12 32 15 1748 2010* 1696 2020 

River 2/2 7 23 27 4 25 8 1770 1947 1742 2020 

Purple 4/4 12 48 32 5 34 4 1742 2006 1683 2020 

Flick Ck. 2/2 6 20 32 15 29 18 1708 2006 1673 2020 

Across Lk.  2/1 5 16 31 3 54 NA 1786 2015* 1766 2020 

All-Unit        1596 2015 1558 2020 

Composite 27 75 269 30 8 31 11     

WMPI 27 75 269 30 8 32 11     

Point FRI NA 66 260 36 13 NA NA     
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Figure 1-6.  Boxplots of the mean composite intervals (CFI) for 10 individual units in Stehekin.  

Dark line is the median CFI value, and lower and upper edges of boxes are the 1st and 3rd 

quartiles.  Dotted lines (whiskers) extend to minimum and maximum data points.  There are no 

outliers. 

 

 

1.6.3 Establishment Dates 

I did not identify any additional fires through the analysis of establishment dates (Figure 

1-7).  I found that tree establishment frequently occurred in pulses of six or more trees within 40 

years followed by decades of lesser tree establishment, but these pulses were always preceded by 

a fire.  These findings confirm that fires were historically mixed-severity, whereby enough trees 

were killed by the fires to initiate a pulse of establishment, but not severe enough to be stand-

replacing.  Most of the trees in the plots established between 1900 and 1940 in response to fires 

in the early 1900s.  I found fewer older trees in the plots despite multiple earlier fires, which 

again confirms that fires were historically mixed severity, with enough older legacy trees to 

record fire history despite the replacement of a large proportion of each stand with each 

subsequent fire.       
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Figure 1-7.  Dates of tree establishment in 30 fire history plots, and corresponding fire dates in 

28 plots (fire scars not collected in plots 18 and 19).  All cases where six or more trees 

established within 40 years were preceded by a fire, indicating that no high severity fires were 

missed in the fire scar sampling.  See text for explanation. 

 
 

1.6.4 Effects of Settlement and Fire Suppression 

I found a significant difference (p = 0.047) in the number of fires that occurred in the first 

21 years (1886–1907) of non-indigenous settlement (settlement mean = 1.1 fires) compared to 21 

years (1864–1885) before settlement (pre-settlement mean = 0.7 fires) (Table 1-4).  Although I 

did not find a significant decrease in fire frequency during the suppression era (1908 – 1967) vs. 

pre-suppression (1848 – 1907), I did find a significantly longer fire interval corresponding to 

mandatory suppression (p=0.004).  The CFI before suppression (pre-suppression mean = 29.7 

years) was almost equivalent to the grand mean CFI for Stehekin, whereas the suppression mean 

CFI was 50.5 years.  
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Table 1-4.  Analysis of settlement and fire suppression.  Summary of t-test results comparing 1) 

number of fires before (Pre) settlement (1864-1885) and after (Post) settlement (1886 – 1907), 

and 2) Pre fire suppression (1849 - 1907) and Post fire suppression (1908 – 1967), and 3) interval 

length Pre and Post fire suppression.  * is significant at 95% confidence level, ** is significant at 

the 99% confidence level. 

 

Settlement (1886) 
 

t-Value 
 

df 
 

p-Value Pre Mean (SD) Post Mean (SD) Mean Difference 

1) No. fires +/- 21 years -2.087 25 0.047 * 0.7 (0.6) 1.1 (0.6) -0.346   

Suppression (1908) t-Value 
 

df 
 

p-Value Pre Mean (SD) Post Mean (SD) Mean Difference 

2) No. fires +/- 59 years 1.138 26 0.266  2.2 (1.0) 1.9 (0.9) 0.296 

3) Fire interval length -3.178 23 0.004 ** 29.7 (11.9) 50.5 (28.5) -20.853 

 

 

1.6.5 Historical Fire Severity 

The plots were ranked from lowest to highest fire severity (1 – 24) based on the 

proportions of fire-scarred to total trees per hectare, the proxy for fire severity.  The plot with the 

highest proportion of scars to trees (25 scarred trees / 225 trees per ha = 0.11) was ranked the 

lowest fire severity (rank 1), and the plot with the highest proportion (5 scarred trees / 900 trees 

per ha = 0.01) ranked highest severity (rank 24).  The mean proportion of scarred to total trees 

per hectare was 0.031 (3.1%) with standard deviation of 0.025 (2.5%).  The scatterplot of the 

severity rankings shows a wide variation in the number of fire-scarred trees and tree densities per 

hectare (Figure 1-8).  The units, however, do tend to group by more narrow ranges of severity 

(Figure 1-9).  Notably, the River unit has two plots with equivalent fire severities (0.029 and 

0.030), and all 4 plots at Howard Lake have high severity ranks. 
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Figure 1-8.  Scatterplot of the proxy for fire severity; the proportion of fire-scarred trees to total 

number of trees per hectare.  The proportions (points) are ranked from lowest to highest severity 

(1 – 24).  Lowest severity in the bottom right corner (25 fire scars/hectare in stand with 225 

trees/hectare) and highest severity in upper left (5 fire scars/hectare in stand with 900 

trees/hectare). 
 

 
Figure 1-9.  Fire severity (proportions of fire-scarred to total trees per hectare) per plot in each 

unit with fire-scarred trees.  Smaller proportions of scarred /total trees represent higher fire 

severities.  



28 

1.6.6 Fire Frequency Predictors 

The stand characteristics and stand ages of the plots are listed in Table 1-5.  I did not 

identify any significant environmental predictors (aspect, elevation, slope, heat load, or direct 

incident radiation) of the historical CFI using OLS regression.  Bivariate scatterplots of the 

historical CFI paired with each potential predictor confirmed that there were weak to no 

statistical relationships between the response and individual predictors. 

However, the secondary analysis using ANOVA revealed significant differences in CFIs 

between plots with/without the presence of ponderosa pine (p=0.07, alpha level 0.1) and in 

interaction between unit, southwest vs. northeast aspects, and ponderosa pine (p=0.02) (Table 1-

6).  I explored these results by plotting CFI by aspect and overlaying the proportions of 

ponderosa pine and the unit code (Figure 1-10).  NE-facing plots were clustered at moderate 

CFIs (24 to 33 years), whereas SW-facing plots were distributed evenly across the range of CFIs.  

Ponderosa pine was associated with the longest intervals and absent in all but one of the units 

(McGregor) with a shorter interval (< 24 CFI).  There did not appear to be a direct relationship 

between the presence of ponderosa pine and plot aspect, but ponderosa pine did tend to vary by 

unit.  Ponderosa pine was present or absent depending upon unit in 5 out of 10 units, and only 2 

units had equal numbers of plots with ponderosa pine present and absent.  Lastly, plots in the 

same units shared the same aspect (NE-facing or SW-facing) in all but one unit (Company).   
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Table 1-5.  Summary of structural and environmental characteristics for each unit.  Units ordered 

from north (1) to south (10).  Mean tree age derived from cores collected at 20 points along the 

sampling spiral.  Stand characteristics (DBH, PIPO/PSME = proportion of ponderosa pine to 

Douglas-fir) derived from three 100-m2 plots along the spiral.  Environmental characteristics for 

each plot were derived from GIS (shown in table) and sampled locally along the spiral (for 

reference only).  

Unit Plots 
Mean 

Age 
Mean 

DBH 
Trees 

Per Ha 
PIPO 

/PSME 
Mean 

Slope (%) 
Mean 

Aspect 
Mean 

Elev (m) 

1 Howard Lake 5 103 50.2 750 0.32 38.3 SW 707 

2 Agnes 2 89 30.3 433 0.00 33.5 SE 588 

3 McGregor 3 103 50.0 1000 0.50 39.7 SW 579 

4 Company 2 128 49.4 400 0.00 31.0 NE/SW 602 

5 Rainbow 3 126 39.9 1017 0.04 48.1 SW 689 

6 Boulder 5 98 46.4 527 0.11 47.6 SW 551 

7 River 2 126 39.9 517 0.14 40.7 NE 431 

8 Purple 4 95 39.0 297 0.04 61.7 SW 698 

9 Flick Creek 2 111 41.2 ---- ---- 53.7 SW 481 

10 Across Lake 2 94 35.1 300 0.21 64.5 NE 447 

 

 

Table 1-6.  ANOVA of fire frequency predictors shows significant differences in CFI with 

presence/absence of ponderosa pine (PIPO), and in interaction with location (Unit), SW-

facing/NE-facing aspects (SW/NE), and PIPO. ‧ is significant at the 90th confidence level, * is 

significant at the 95th confidence level. 

ANOVA Results:  CFI ≈ Unit * SW/NE Aspect * Ponderosa Pine  

Coefficients: Df Sum Sq Mean Sq F value 
Pr (> 

|F|)  
 

Unit 1 3.2 3.2 0.066 0.801     

    SW/NE 1 0.1 0.1 0.001 0.971    

PIPO 1 190.6 190.6 3.910 0.068 .  

Unit * SW/NE 1 39.3 39.3 0.806 0.385   

Unit * PIPO 1 27.4 27.4 0.563 0.466   

SW/NE * PIPO 1 44.9 44.9 0.921 0.354   

Unit * SW/NE * PIPO 1 316.4 316.4 6.492 0.023 *  

Residuals 14 682.4 48.7  R2=0.48   
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Figure 1-10.  Scatterplot of CFI by aspect with unit codes and presence/absence of ponderosa 

pine indicated at each point.  

 
  

1.6.7 Fire Severity Predictors 

Slope (Log Slope) and the interaction of slope and aspect (Log Slope x Log COS-Aspect) 

were both identified as significant predictors (Slope: 95th percentile p=0.01; Slope x Aspect: 90th 

percentile p=0.05) of fire severity in the GLM (Table 1-7).  There is an inverse relationship 

between slope and fire severity such that fire severity decreases as the steepness of the slope 

increases (Figure 1-11).  Slopes ranged from moderate (21.3%) to very steep (65.3%) with the 

average being moderate (Mean = 43%, SD = 13.5%).  Perhaps more intuitive, the regression also 

revealed that fire severity is lower at cooler (NE-facing) aspects, although the cosine-aspect was 

not a significant predictor of fire severity except in interaction with slope.  The cosine-aspect was 

more varied and dispersed at higher severities and lesser slopes.  The average cosine-aspect on 

the plots corresponds to temperate aspects (Mean = 0.51, SD=0.31), and ranges from zero on 

NE-facing cool aspects to one on SW-facing warm aspects.   
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Table 1-7.  GLM of fire severity predictors identifies slope (Log Slope) and the interaction of 

slope and aspect (COS-Aspect) as significant predictors of fire severity.  Fire severity is 

represented by the proportion of fire-scarred trees per hectare to total trees per hectare.  * is 

significant at 95th percent confidence level, ‧ is significant at the 90th percent confidence level.  

PRD is proportional reduction in deviance for GLM. 

GLM (Quasibinomial): Scars Per Trees ≈ Log Slope * Log COS-Aspect 

Coefficients: Estimate Std. Error t value Pr (> |t|)  

(Intercept) -3.55 0.125 -28.501 <2e-16   *** 

    Log Slope 0.37 0.132 2.827 0.010  * 

Log COS-Aspect -0.16 0.121 -1.309 0.205  

Log Slope * Log COS-Aspect -0.21 0.104 -2.050 0.054 . 

Null deviance 

Residual deviance 

0.399 

0.179 

on 23 df 

on 20 df  PRD 0.552 

 

 

 

 
Figure 1-11.  Scatterplot of the proxy for fire severity (proportion of scarred trees to total trees 

per hectare) and mean slope of 24 fire history plots.  Low proportions of scarred trees represent 

higher fire severity. Fire severity decreases as slope increases.  Cosine-aspect values for each 

plot show cooler aspects (lower values) associated with lower fire severity.   
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1.6.8 Fire Frequency and Severity per Plot 

Fire frequency and severity varied across the plots (Figure 1-12).  Plots of high severity 

are distributed across the range of fire frequencies, indicating that there is no relationship 

between fire frequency and fire severity.  Although I found that fire severity differs by unit, I did 

not find an equivalent relationship between CFI and unit.  This is especially evident in the 

Boulder and Howard Lake units where plots span the range of fire frequency, such that plots 

with moderate to high fire severities are associated with the shortest and longest fire intervals.  

 
Figure 1-12.  Fire severity ranks and mean CFI (years) for 30 fire-history plots in 10 units (in 

italics) in Stehekin, Lake Chelan National Recreation Area.  Triangles represent severity rank (1- 

24) from low to high. Circles represent mean CFI from shortest to longest (16 to 44 years).  Solid 

colored circles have same relative rank for fire severity and CFI.  Black indicates data not 

collected (NA). 
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1.7 Discussion 

My research illustrates the frequent, dominant, and complex nature of fire in the Stehekin 

valley.  The historical mean CFI (31 years, SD=11), grand mean CFI (30 years, SD=8) and 

narrow range of the unit CFIs (20 to 33 years) verify that fires have been relatively common and 

persistent throughout the 457-year sampling period (1558–2020).  Within that period, I 

confirmed a brief but significant increase in the number of fires over the settlement era (1886 – 

1907), followed by a prolonged fire-free interval during the suppression era (1908 – 1967) that 

lengthened the mean CFI from 30 years to 51 years (p=0.004).  Although the frequency of fire 

has remained relatively high throughout the sampling period, the locations and characteristics of 

these fires have been highly variable.  Throughout the sampling period, and likely well before it, 

I found a complex interplay of topographic, anthropogenic, and environmental drivers that 

influenced the frequency, severity, and characteristics of these fires.   

The analysis of fire frequency predictors revealed complex interactions between bottom-

up controls (species, location, and topography) that have been recognized as important drivers in 

this complex terrain (Kellogg et al. 2008).  The ANOVA revealed significant differences in CFI 

based on; 1) the interaction of location (unit), SW/NE-facing aspects, and presence of ponderosa 

pine, and 2) the presence/absence of ponderosa pine (at 0.1 alpha level).  I had anticipated 

finding a positive correlation between the presence of ponderosa pine and lower CFIs, given the 

well-documented association of ponderosa pine with frequent, low-severity fire regimes of the 

Pacific Northwest (e.g., Weaver 1959, Pyne 1982, Agee 1993).  Instead, my analysis indicated 

that the presence of ponderosa pine was associated with longer fire intervals (except for in Unit 

3, McGregor).  Presence of ponderosa pine was also not clearly associated with SW-facing 

aspects as often described (Everett et al. 2000, Ziegler et al. 2017), and CFI varied across all 
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aspects. 

There are several potential explanations for these counterintuitive results.  One possibility 

is that higher historical densities of ponderosa pine on SW-facing slopes may have been reduced 

by increased fire intensities in combination with fire suppression.  This theory is supported by 

my analysis of fire severity predictors, in which SW-facing aspects were correlated with higher 

fire severity than NE-facing aspects.  It also agrees with findings that ponderosa pine is more 

susceptible to mortality with the reintroduction of fire following the prolonged era of fire 

suppression (Arno et al. 1995, Arno et al. 2000).  This hypothesis would explain the significant 

interaction between ponderosa pine, location, and aspect in the analysis of CFI; assuming 

ponderosa pine were once prevalent on SW-facing aspects as found elsewhere (e.g., Ziegler et al. 

2017), and were killed by higher-severity fires occurring at variable locations following the fire 

suppression era.  However, another explanation, supported by Sherriff and Veblen’s (2007) 

research on the Colorado Front Range, is that ponderosa pine forests may be associated with 

longer fire return intervals and higher-severity fire effects than previously thought, especially on 

steeper slopes and at higher elevations.  Baker and Ehle (2001), Hessburg et al. (2007), and 

others have come to similar conclusions.   

The analysis of fire severity predictors also confirms the importance of local topography 

on fire severity as found by Cansler (2011).  In the case of my study, the GLM model identified 

slope and the interaction of slope and cosine-aspect as significant predictors.  I was not surprised 

to find that SW-facing (warm) aspects burned more severely than NE-facing (cool) aspects, 

similar to the results of studies of mixed-severity fire regimes in the Klamath-Siskyou region of 

California and Oregon (Beaty and Taylor 2001, Alexander et al. 2006), although in my study 

cosine-aspect was a significant predictor only in interaction with slope.  The influence of slope 
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on fire severity has been mixed, with steeper slopes associated with high-severity fire effects 

(e.g., Beaty and Taylor 2001, Holden et al. 2009), high- and low-severity fire effects (Alexander 

et al. 2006), or only low-severity fire effects in my case as with Collins (et al. 2007).  In the case 

of Stehekin, I suspect that fire severity is lower on steeper slopes because of the fuel conditions 

and fire behavior.  Logs and woody debris roll down the steep and dissected terrain, 

accumulating in the flatter areas.  During fires, burning logs often smolder in the basins with 

higher fire intensity, and flames make swift runs back up the steeper slopes, moving quickly and 

burning with lower intensity (personal observation).   

I found that the interaction of topography, environment, climate, and other factors had a 

stronger influence on fire frequency and severity than any individual variable did by itself.  The 

variability and complex interactions that I found in fire frequency and fire severity are likely 

inherent to the mixed-severity fire regime (Halofsky et al. 2011, Hessburg 2007).  The fact that 

all the pulses of tree establishment were preceded by fires in the scar record confirms that fires 

were of mixed (moderate) severity rather than exclusively high or low severity.  Stand-replacing 

fire would have wiped out the scar record, and low-severity fires would not have precipitated 

pulses of tree establishment.  Instead, trees established after every fire, presumably in variable-

sized burn scars where trees were killed, and other areas where fire effects were so mild that the 

trees were not scarred.  This assumption is supported by the proxy for fire severity, in which I 

found a wide distribution of fire severities across multiple stand densities.  It is also verified by 

the wide range of combinations of fire frequencies and severities found in the units, such that 

plots that burned with low- or high-frequency fire were associated with all ranges of low- to 

high-severity fire effects. 

The overall theme of fire frequency and severity in the mixed-severity forests of Stehekin 
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is variability and complexity, providing park managers with challenges and opportunities in fire 

management, including cause for optimism.  Challenges and pitfalls will be associated with 

predicting the effects of climate change in complex systems where multiple outcomes are 

possible, emergent properties are difficult to predict, and feedback loops between components 

obscure the drivers from the responses (Newman et al. 2019).  Kennedy et al. (2021) warn about 

the complications of feedback loops and assumptions that relationships between climate and fire 

variables will remain stationary over time.  However, both research teams suggest that these 

limitations can be overcome with empirical data collected over the appropriate scale to answer 

questions regarding climate and fire interactions over short time horizons. 

Our optimism should be based on the variability and complexity in mixed-severity 

regimes which provide forests with resiliency to the potential effects of climate change.  For 

example, the variability of fire frequency and severity in the complex topography of Stehekin 

provides greater opportunity for tree survival in lightly burned and unburned patches, which 

increase resiliency to climate change by providing seed sources in postfire stands (Coop et al. 

2019).  The heterogeneity of fire size and frequency in mixed-severity fire regimes may also 

provide resiliency through the diversity of species that regenerate in different climate conditions 

(Hanson et al. 2015).   

The challenge and opportunity for managers is to anticipate the potential effects of each 

wildfire, based on location, terrain, and species, to manage for maximum resilience to climate 

change.  This means allowing more wildland fires to burn in complex topography where the 

mosaic of fire effects maintains diversity in forest structure, age classes, and fuels to promote 

ecosystem resilience (Seidl et al. 2014).  It also means recognizing when and where the fire-

weather outlook and terrain increase the potential for large areas to burn with higher-severity 
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effects, thus reducing post-fire resilience.  In this case, burn techniques used in suppression to 

minimize fire intensity (e.g., back-burning rather than burning-out with head fire) could be a 

good strategy to contain the wildfire and limit the size of high-severity patches.  Although 

complexity increases uncertainty in the effects of climate change on mixed-severity fire regimes, 

it also provides diversity in the ways that ecosystems, and ultimately managers, respond to those 

changes.   
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Chapter 2. Fuel characteristics of Mount Rainier National Park, Washington, USA: 

Mapping with a combination of field, environmental, and LiDAR data1 

 

2.1 Abstract 

I created a fuel map for Mount Rainier National Park to inform models of fire behavior 

and anticipate wildland fire effects on managed lands.  My focus was to maximize accuracy 

while defining fuel categories that were appropriate to the spatial scales associated with the park. 

I classified and mapped fuel characteristics (fuelbeds) compatible with the Fuel Characteristic 

Classification System (FCCS) across Mount Rainier National Park using a combination of 

empirically derived field data, LiDAR, and climate data. I used the LiDAR and climate data to 

distinguish high from low surface-fuel loadings and to predict and map their median values from 

151 field plots using random forests modeling, with accuracies between 62% and 75%.  I also 

defined and mapped 6 forest structure classes related to fire behavior from LiDAR data.  The 

surface fuels, structure classes, and field data (species and canopy data) were combined and 

matched to create 29 high-resolution fuelbeds for the Park.  I used FCCS to derive fire and fuel 

potentials, ranked from low to high on an interval scale of 0 to 9, for the fuelbeds.  Surface fire 

behavior potentials (FBP) ranged from 4 to 7 within 51% of the study area, ranking moderately 

high (score of 7), in contrast to 29% located primarily on the drier east side, ranking moderately 

low (score of 4). Crown fire potentials (CFP) and available fuel potentials (AFP) were more 

evenly distributed across the Park.  CFP was moderate (38% score of 5), whereas AFP was 

relatively high throughout the Park, (40% score of 9).  I expect that climate change will increase 

 

I wish to acknowledge my collaborators in this work; Van Kane, School of Environmental and 

Forest Sciences, University of Washington, Seattle, WA, and Catharine Copass, Olympic 

National Park, 600 E Park Avenue, Port Angeles, WA. 
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fire size and frequency sooner on the drier east side, but that if the trend towards warmer and 

drier conditions persists, that fire behavior and effects will eventually be more severe on the west 

side due to higher FBP and fewer fire-adapted species. 

 

2.2 Introduction 

Accurate fine-scale fuel maps can be used for a variety of applications to improve forest 

management, including quantifying biomass and carbon storage capacity (e.g., Smithwick et al 

2009), identifying important wildlife habitat (e.g., North et al. 1999, Roberts et al. 2011, Ucitel et 

al. 2003), and to inform fire and forest management. Fuel maps are essential for fire research and 

management to model fuel treatment effectiveness, smoke emissions, and fire spread.  The 

importance of fuel maps in forests with less frequent fire, such as at Mount Rainier National Park 

(the Park) has increased substantially due to climate change, particularly concerning the 

increased likelihood of longer fire seasons2 and larger areas burned in forest ecosystems (Littell 

et al. 2009, 2018).   

Fuel maps for all federal government lands in the United States have been produced by 

the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE) 

(Rollins and Frame 2006).  These maps assigned either the 13 original fire behavior fuel models 

(Albini 1976, Anderson 1982) or the more recent 40 fuel models developed by Scott and Burgan 

(2005), using a crosswalk to vegetation layers, and are at 30-m resolution.  A similar but 

independent effort developed a national-scale map assigning “fuelbeds” from the Fuel 

Characteristic Classification System (FCCS, Prichard et al. 2019), with a different crosswalk 

from the same vegetation layers used by LANDFIRE (McKenzie et al. 2007).  This map was also 

 
2 Fire season corresponds to an increased number of days with high fire danger. 
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at 30-m resolution; later the authors and colleagues aggregated the map to 1-km resolution, to be 

tractable for air-quality models and others that operate at coarser spatial scales (McKenzie et al. 

2012).  

These national-scale products are not appropriate at the scale of park operations, despite 

their relatively fine spatial resolution.  On the contrary, their fine resolution (30 m) leads to a 

false precision, because the fuel characteristics are drawn from vegetation classes that are 

(typically) at least regional in scale, and therefore, misrepresent the unique ecological character 

of a local landscape (McKenzie et al. 2007).  For example, the FCCS fuelbed “Whitebark pine / 

Subalpine fir forest” (#61) occurs across the western United States at high elevations (in the 

national map).  Vegetation and fuels in Mount Rainier National Park may differ from those in 

Glacier National Park, but the national maps assign the same values to surface fuel loadings, 

canopy cover, and other aspects of the fuelbed.  Similar issues arise with other fuelbed 

assignments across the Park in the national maps, heightened by the diverse topography and 

microclimates at Mount Rainier.     

In this paper, I took steps to increase the local specificity and applicability of fuelbeds 

and the subsequent map for Mount Rainier National Park.  I chose FCCS as the template for the 

fuel mapping project because of its close links to vegetation and structure, which matched this 

project’s association with the development of the current vegetation map (Nielsen et al. 2021).  I 

also chose to make the fuelbeds compatible with FCCS because of the three informative indices 

of fuel and fire potential that FCCS provides for each fuelbed.  The three fire-potential ratings, 

ranked on an interval scale of 0 to 9 (low to high), include: 1) surface fire behavior potential 

(FBP), 2) crown fire potential (CFP), and 3) available fuel potential (AFP) (Sandberg et al. 

2007).   
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The primary goals of my study were: 1) to map the fuelbeds across Mount Rainier 

National Park, at high resolution, and 2) to highlight variability in the live and dead fuel 

loadings, and their associated fire-potential ratings (Sandberg et al. 2007).  This will aid resource 

and fire managers in identifying areas of concern and interest, both currently and into the future, 

with its potential for warmer, drier, and longer fire seasons due to climate change (Mote et al. 

2014).   

The effects of climate change on fire regimes in the western United States are becoming 

clearer, although there is far less certainty with respect to west-side (moist temperate) forests 

with longer fire rotations such as at Mount Rainier (Littell et al. 2018, Halofsky et al 2020).  

Although infrequent (400+ years) high-severity fires are the norm throughout Mount Rainier 

(Hemstrom and Franklin 1982, Agee 1993), the potential for these large fires to occur more 

frequently has increased, along with the likelihood of a "type change" in the predominant species 

composition of the forest following stand-replacing fire due to climate change (Stephens et al. 

2013).  I was particularly interested in assessing fuel loadings on the more mesic east side of the 

park, where some less predictable mixed-severity fire effects also occur (Siderius and Murray 

2005).  Knowledge of fine-scale fuel loading and structure is critical for assessing potential fire 

behavior and prescribing fuel treatments to protect infrastructure while maintaining habitat for 

species that are poorly adapted to wildfire.  For example, old-growth forests dominated by 

western hemlock (Tsuga heterophylla (Raf. Sarg.)) that are habitat for northern spotted owls 

(Strix occidentalis caurina), are critical to protect from the effects of larger stand-replacing fires.  

Overall, I aimed to identify areas that are more likely to experience increased fire behavior and 

effects in the Park due to heavy fuel loads, especially in a warmer climate.  

Another goal of my study was to determine whether LiDAR technology could 
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substantially improve the accuracy and resolution of fuel maps.  Acquisition of LiDAR data at 

the park provided me an opportunity to link canopy characteristics to field measurements of both 

surface and canopy fuels to assess this.  LiDAR data have been used to predict canopy 

characteristics (e.g., canopy bulk density, tree cover, tree height) related to fuel maps (e.g., Riano 

et al 2003, Anderson et al 2005, Erdody and Moskal 2010, Hermosilla 2014), but only a few 

studies have used LiDAR to predict surface fuel loads (Mutlu et al 2008, Price and Gordon 

2016).  Price and Gordon (2016) used LiDAR to map fire hazard in Australian forests with 

useful but less precise predictions of surface fuels than of fuel cover.  Mutlu et al. (2008) used 

LiDAR-derived canopy conditions to predict surface fuel loadings but modeled the 13 standard 

fire behavior fuel models (Albini 1976, Anderson 1982) rather than continuous fuel loads. 

 

2.3 Research Questions  

1) How accurately can surface fuel characteristics be mapped from remote sensing (LiDAR) 

and climatology?  

2) How are surface and canopy fuels (fuelbeds) distributed across Mount Rainier National 

Park? 

3) How are fire behavior and fuel potentials distributed across Mount Rainier National 

Park? 
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2.4 Methods 

2.4.1 Summary 

I integrated several data sets from across the study area, Mount Rainier National Park.  

Figure 2-1 shows the parallel processing of four data sources in multiple steps, to define, map, 

and interpret fuel characteristics (fuelbeds).   

 
Figure 2-1.  Flowchart illustrating the parallel processing of four datasets to build and map 29 

fuelbeds and their associated FCCS fire potentials (crown fire, surface fire behavior, and 

available fuel) for Mount Rainier National Park.  Yellow boxes indicate map products. 

 

First, I collected surface and canopy fuels, and potential predictors of different fuel 

loadings, including 1) climate variables (e.g., actual evapotranspiration, climatic water deficit) 
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from PRISM data (PRISM Climate Group 2013), 2) topography from digital terrain models 

(DTMs), 3) surface and canopy fuel characteristics measured on field plots, and 4) canopy 

metrics from airborne LiDAR data.  

Next, I used linear regression and random forests (Ho 1995) modeling, with the surface 

fuel data from the field as response variables, and topography and climate variables as predictors, 

to map surface fuel loads across the Park.  In a parallel process, I used cluster analysis of the 

canopy metrics to define and map overstory structure classes across the Park.   

I then constructed and mapped fuelbeds by combining the predicted surface fuel loads 

and the forest structure classes (plus three additional vegetation structure classes).  I used species 

composition and canopy characteristics data from the field to further define the fuelbeds for input 

into FCCS.  I used FCCS to generate fire behavior and fuel potentials, which I used to identify 

areas with resources at risk across the Park. 

 

2.4.2 Study Area  

Mount Rainier National Park, in the state of Washington, USA, is a 95,660-hectare 

national park encompassing Mount Rainier, the highest mountain (4,393 m) within the Cascade 

Range.  Annual precipitation is high, increasing due to orographic effects from about 150 cm at 

low elevations to over 250 cm in the subalpine zone, the latter mostly in the form of a deep 

snowpack.  Moderately cold winters are typically followed by mild, dry summers.  This maritime 

climate is the reason that west-side, low-elevation forests of Mount Rainier and throughout the 

Pacific Northwest are the most productive in the western United States (McKenzie 2020).   

The study area consists of 70,316 hectares of forest, meadow, and shrubs delineated in 

the most recent vegetation map of Mount Rainier (Nielsen et al. 2021), to which my project was 
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related (as a collaborative effort to collect the vegetation and fuels data).  Throughout the study 

area, lower-elevation forests are dominated by western hemlock and Douglas-fir (Pseudotsuga 

menziesii var, menziesii (Mirb.) Franco).  Moving up in elevation, forests are a mix of Pacific 

silver fir (Abies amabilis (Douglas ex Loudon)) and western hemlock.  Mountain hemlock 

(Tsuga mertensiana (Bong.) Carrière)-Pacific silver fir forests are dominant just below subalpine 

fir (Abies lasiocarpa (Hook.) Nutt.) and subalpine fir-whitebark pine (Pinus albicaulis 

(Engelm.)) woodlands.  Above tree line (typically 1600 to 2000 m), short-statured shrubs and 

herbaceous meadows give way to lithomorphic vegetation communities and then permanent 

snowfields and glaciers.

The dominant fire regime at Mount Rainier is infrequent, large, high-severity fires.  The 

natural fire-return interval for the whole park was calculated at 465 years for the period prior to 

Euro-American settlement (1200–1850) (Hemstrom and Franklin 1982).  Hemstrom and 

Franklin (1982) also calculated the natural fire rotations for the settlement period (1850–1900) 

and modern fire suppression era (1900–1978) as 226 and 2583 years respectively.  Although fire 

suppression reduced frequency, the impact of fire suppression on fuel accumulation is negligible, 

given the long natural fire rotation (Hemstrom and Franklin 1982, McKenzie et al. 2004).  

Despite the predominance of high-severity fire in the park, there is evidence of mixed- 

and low-severity fire as well.  Siderius and Murray (2005) recognized a preponderance of mixed-

severity fire along the eastern edge of Mount Rainier, presumably due to the drier conditions in 

this portion of the park.  Hemstrom and Franklin (1982) noted that fire was most severe at low to 

mid elevations and was less severe and more frequent in high-elevation meadows and 

woodlands.  This is supported by the fire record in the Wildland Fire Management Information 

database (USDI BLM 2020).  The fire record also shows that fires were more frequent 
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throughout the east side than the west side, with 136 of 155 (88%) lightning-caused fires 

between 1970 and 2019 occurring on the east side of the Park.   

 

2.4.3 Field Data Collection  

Vegetation composition and fuels data to construct and map FCCS-compatible fuelbeds 

were collected on 311 plots, of which 262 were ultimately used.  The surface fuel loadings from 

151 plots (post-processed, accuracy < 1 meter) were used to map surface fuels, and the canopy 

characteristics and species data from 262 plots (111 with GPS accuracies < 10 meters added to 

151 post-processed) were used to develop the fuelbeds (Figure 2-2).  The plots that were not 

used were omitted due to poor location accuracies as determined by GPS in the field or during 

post-processing, or due to mismatch with the vegetation or structural maps.  The majority (212 

plots) of data used in the mapping project were collected between 2005 and 2007 in conjunction 

with the vegetation classification project associated with the most recent vegetation map (Nielsen 

et al. 2021).  Additional canopy density plots were inventoried in 2010 to provide supplemental 

data on canopy structure to match some of the fuelbed types where GPS accuracy had been low.  

Sampling locations for all plots were selected subjectively, in proximity to trails, based on 

canopy homogeneity within prioritized vegetation alliances to inform the vegetation 

classification project.
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Figure 2-2.  Map of study area showing field plot locations by dominant tree species per the 

vegetation map (Nielsen et al. 2021).  262 fuel plots were used to define canopy characteristics 

for the final fuelbeds.  151 of 262 fuel plots were used in the surface fuel analysis.  Cover for 

elevations above 2000 m is not shown where rock fields and glaciers centered around the 

mountain’s peak are found. 

 

 

In each sampling location, a 400-m2 circular plot was established.  The canopy of each 

plot was divided into three strata: 1) subcanopy, 2) canopy, and 3) emergent in which a few 

dominant trees were above the main canopy.  The total canopy cover and average height were 

recorded for each stratum, and species, height, height to live crown, and diameter at breast height 

(DBH) were recorded for a subsample of up to 5 trees within each stratum.  Understory shrub 

cover and three classes of snags (based on degree of decay) were also recorded.  If ladder fuels 

(continuous fuels within 0.5 m of ground to canopy) were present in 50% or more of the stand, 

this was noted.  These data were collected to provide canopy characteristics and species data for 

the development of the fuelbeds in FCCS. 
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Surface fuel data were collected to map surface fuel loading across the park.  Two 15-

meter  “Brown’s transects” (Brown et al. 1982) per plot were used to measure three components 

of the surface fuels related to fire behavior: 1) litter and duff (ORG, organic), 2) 1-100 hour 

time-lag classes where; 1 hour = ≤ 0.6 cm, 10 hour = 0.6 - 2.5 cm, and 100 hour = 2.5-7.6 cm 

diameter dead and detached wood (SW, small woody fuel) and 3) 1000 hour time-lag class = 

>7.6 cm diameter dead and detached wood (LW, large woody fuel).  The 1- and 10-hour fuels 

were tallied for the first 1.8 m, 100-hour fuels were tallied for 3.7 m, and LW were tallied for the 

whole length (15 m.) of the transect.  Organic depths and duff derivations were recorded in five 

locations along each transect.  The litter arrangement (normal, fluffy, or perched) was recorded. 

Duff derivation was determined for upper layers as either dead moss or litter and for lower layers 

as humus or muck.   

The field data were entered into the National Park Service Fire Effects Assessment Tool 

(FEAT) Version 2.0 database (an earlier version of the current FEAT and FireMon Integrated 

(FFI) program (Lutes et al. 2009)) and then exported into Excel spreadsheets for manual 

calculation of canopy characteristics and surface fuel loadings.  The data from the FEAT 

database are available on the Integrated Resource Management Applications (IRMA) website 

(https://irma.nps.gov/DataStore/Reference/Profile/2291576). 

 

2.4.4 Climate Metrics 

I based the climate metrics on the PRISM monthly and annual climatological averages 

(1971 to 2000) mapped at 30 arc-second (~800 m) resolution (Daly et al. 2008, PRISM Climate 

Group 2013).  The PRISM climate modeling project combines data from several sets of weather 

stations and interpolates annual and monthly precipitation, and monthly mean temperatures 

https://irma.nps.gov/DataStore/Reference/Profile/2291576
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based on reported weather and local elevation.  I used the annual precipitation and January and 

July mean temperatures as independent predictors in my modeling. 

I modeled annual actual evapotranspiration (AET) and annual climatic water deficit 

(hereafter “deficit”) using the PRISM monthly climatological precipitation and temperatures 

with a modified Thornthwaite water balance model (Thornthwaite 1948; Thornthwaite and 

Mather 1955).  Thornthwaite models calculate available water by considering whether 

precipitation is likely to be rain or snow, calculating snowpack accumulation and melt (if any), 

runoff, soil water holding capacity, and potential evapotranspiration (PET) by vegetation.  The 

evolved Thornthwaite model (Hamon 1963, Dingman 2002) has been modified for mountainous 

terrain by including terms for slope and aspect (Stephenson 1998, Lutz et al. 2010).   

 

2.4.5 Airborne LiDAR Data and DTMs 

Watershed Sciences, Inc. (Corvallis, OR) collected LiDAR data for the Park plus a 100-m 

buffer.  The company began data collection in September 2007, suspended operations due to 

early snow fall, and resumed collection from September to October 2008.  They used a dual 

Leica ALS50 Phase II LiDAR system with a scan angle of ±15º off nadir.  The Leica system 

recorded up to four discrete returns per LiDAR pulse.  Data were acquired at a mean rate of 

return of 5.7 points per meter.  A one-meter resolution DTM was created using the TerraScan 

v.8.001 and Terra Modeler v7.006 software (Terrasolid, Helsinki, Finland).  For forest structure 

metrics, I subtracted the elevation of the DTM from all LiDAR return elevations to calculate 

return height above ground.  I excluded the small amount of the Park classified as riparian due to 

the early cold spell during the collection period that resulted in deciduous species being 

inconsistently in leaf-on or leaf-off condition. 

http://www.terrasolid.fi/en/products
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I processed the LiDAR return-point cloud data to generate forest structure and 

topographic metrics using the U.S. Forest Service Fusion software package, beta version derived 

from version 3.00 (http://forsys.cfr.washington.edu/fusion.html).  I aggregated these data to 30-m 

grid cells.  Because many areas in the Park had canopy cover >90%, these areas had too few 

LiDAR returns <2 m to measure shrub cover across the Park.  I therefore calculated LiDAR 

vegetation metrics only for forest structures ≥2 m in height.  

 

2.4.6 Forest Structure Metrics  

 I used the LiDAR data to calculate metrics for canopy height, horizontal and vertical 

complexity, and cover.  I measured canopy heights using return percentiles; for example, the 95th 

percentile of return heights is the height at which 95 percent of returns ≥2 m are below.  To 

capture vertical complexity of the canopy, I calculated the standard deviation and coefficient of 

variation of the return heights >2 m.  I also used rumple, a simple index of the rugosity of the 

outer canopy surface (Parker et al. 2004, Ogunjemiyo et al. 2005, Kane et al. 2010b), to measure 

canopy heterogeneity in both vertical and horizontal dimensions (Kane et al. 2010b), making it a 

more sensitive measure of the variability of tree clumping among different height strata than just 

the standard deviation of return height (Kane et al. 2011).  Lastly, canopy cover metrics were 

calculated for four height strata (>32 m, 16-32 m, 8-16 m, 2-8 m) and for all vegetation >2 m. 

These cover measurements are calculated as a proportion: returns within a target stratum divided 

by all returns in that stratum and below.   

 

2.4.7 Topographic Variables 

I used the Fusion software to calculate topographic metrics using the vendor-supplied 1-

http://forsys.cfr.washington.edu/fusion.html
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m DTM (Table 1).  Fusion reported elevation at the center point for each 30 m grid cell.  I 

calculated slope, aspect, and curvature at 30-m, 90-m, and 270-m scales.  I used an equation by 

McCune and Keon (2002) to transform aspect to a scale from zero to one, corresponding to 

northeast (coolest) and southwest (warmest) aspects respectively: (1-cos(θ-45))/2, where θ = aspect. 

Curvature, derived from an algorithm by Zevenbergen and Thorne (1987), uses an index from 1 

to -1, in which zero indicates a flat surface, and positive and negative values indicate the degree 

of convexity or concavity, respectively.  I used the Fusion software to calculate an integrated 

solar radiation index (SRI), which uses aspect, slope, and latitude to model the solar radiation on 

each grid cell during the hour surrounding noon on the equinox (Keating et al. 2007). 

 

Table 2-1.  Input variables to classify surface fuel loads and canopy structure classes.  

Forest structure metrics (LiDAR) Abbreviation* Scales, ranges, or breaks 

LiDAR return height percentiles (m) p95, etc. 95th, 75th, 50th, 25th 

Standard deviation return height (m) stdev 
 

Coefficient of variation return height (m) co-var  

Rumple (rugosity) rumple  

Canopy cover > 2 m (%) cvr.gt2 
 

Canopy cover by height strata (%) cvr.2to8, etc. 2-8, 8-16, 16-32, >32 m 
 
Topographic Variables (LiDAR-based 1 m DTM) 

    

Elevation, (m) elev.30m 30 m  

Aspect, (Cosine-transformed) aspect.30, etc. 30 m, 90 m, 270 m 

Slope slope.30, etc. 30 m, 90 m, 270 m 

Slope curvature (concavity or convexness) curvature.30, etc. 30 m, 90 m, 270 m 

Topographic position index (Jenness 2006) tpi.100, etc. 100 m, 250 m, 500 m, 1000 m, 
2000 m 

Climate (PRISM)   

Precipitation, annual (mm) precip 
 

Actual evapotranspiration, annual (mm) aet 
 

Deficit, annual (mm) deficit 
 

January temperature, mean (°C) jan.t 
 

July temperature, mean (°C) july.t 
 

Solar radiation index (relative value) sri.30, etc. 30 m, 90 m, 270 m 

*Example abbreviation given for groups of metrics calculated with different scales, ranges, or breaks. 
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The topographic position indices (TPI) were calculated based on the algorithm developed 

by Weiss (2000) and implemented as an ArcMap 10.1 extension (Jenness 2006).  The TPI 

algorithm compares the elevation of each grid cell to the elevation of grid cells in a user-defined 

circular radius.  Values range from -1 to 1, in which negative values indicate a position towards a 

valley or canyon bottom, values around zero indicate flat areas or mid-slope (which is 

distinguished by the slope within the cell), and positive values indicate a hill or ridge top.  I 

calculated TPI using neighborhoods of 100 m, 250 m, 500 m, 1000 m, and 2000 m.  Areas 

outside the park and beyond the LiDAR acquisition were included in the neighborhood 

calculations by using a 10-m U.S. Geological Survey DEM that included the park and 

surrounding areas.  All climatic, forest structure, and topographic variables that I used to predict 

surface fuel loadings are listed in Table 2-1. 

 

2.4.8 Defining and Mapping Forest Structure Classes  

 Previous work by Kane et al. (2010b) showed that LiDAR variables describing canopy 

structure co-vary.  This allows forest structure classes to be defined, each representing a distinct 

range of structures corresponding to different developmental stages, disturbance histories, and 

climate (Kane et al. 2010a, Kane et al. 2011, Kane et al. 2013).  I chose three metrics to describe 

the overall canopy height structure: 95th percentile return height (dominant tree height), 25th 

percentile return height (canopy base height (Andersen et al. 2005; Erdody and Moskal 2010)), 

and rumple.  To approximate the canopy profile, I used canopy cover measurements for four 

height strata: 2 to 8 m, 8 to 16 m, 16 to 32 m, and >32 m.   

Each of the metrics I chose has a distinctive influence on fire behavior.  The cover 

measurements, indicating stand openness, influence fire behavior potential, whereas canopy 

height (indirectly, by affecting windspeed), and canopy base height influence crown fire 
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potential (Schaaf et al. 2007).  Although I am unaware of rumple being used in fire behavior or 

fuel models, I expect that this measure of texture influences fire spread through the canopy 

profile both vertically and horizontally.   

I based the forest-structure class definitions on a random sample of 25,000 grid cells 

within areas mapped as non-riparian conifer forest.  I used hierarchical clustering with Euclidean 

distances and Ward’s linkage method within the hclust function of the R statistical package 

(release 2.6.1) (R Development Core Team 2007) to identify nine statistically distinct forest 

structure classes.   

 
Figure 2-3.  Final structural classes: 1) eight structural classes were condensed into six final 

structural classes, 2) Three vegetation structure classes were added directly from the vegetation 

map (Nielsen et al. 2021).  

 

I lumped 2 pairs of the 8 forest structure classes into single classes due to common 

features expected to produce similar fire behavior (e.g., tall multistory was lumped with taller 

multistory) (Figure 2-3).  I added three additional “vegetation structure classes” (meadow, 

riparian forest, shrub) directly from the vegetation map, for a total of 9 structure classes across 

the park. 
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2.4.9 Surface Fuel Modeling and Mapping 

I used a sequential approach to predict and map surface fuel loads across the Park using 

the field data as training data and the LiDAR, topographic, and climate data as predictors.  First, 

I used multiple linear regression and random forests modeling to predict the surface fuel loadings 

from the field data as continuous response variables.  These models had poor fit, so I divided the 

fuel loadings into high and low classes for each surface fuel class (high/low organic (ORG), 

high/low small woody fuel (SW), and high/low large woody fuel (LW)) based on their median 

values (low = 25th percentile and high = 75th percentile values of the full range of each class) and 

used random forests modeling to predict and map their locations throughout the Park. 

Random forests modeling is an extension of non-parametric classification and regression 

trees (CART) (Breiman et al. 1984), that uses multiple random subsets of data (bagging) and 

develops a “forest” of regression trees from random draws of the training sample.  For each tree, 

a random portion of the training data is used to develop the model, and the remaining data are 

used for cross-validation to assess accuracy.  The Gini index is used to rank the importance of 

each predictor by assessing how well it splits the data into homogeneous groups (either all high 

or all low).  The results of all the trees within a model are averaged to report the overall accuracy 

of the model and to predict values for new data. 

Using the plot GPS coordinates, we assigned each field plot to the LiDAR, topographic, 

and environmental metrics found in the corresponding 30x30 m grid cell.  I used the 

randomForest and partialPlot functions in the random forests package (http://cran.r-

project.org/web/packages/randomForest/index.html) for the R statistical package (release 2.6.1) 

to develop and analyze our models.   

Because of the stochastic element of random forests, repeated classifications with the 

http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
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same predictors resulted in differences in classification accuracy of 2% to 10% between runs.  

For example, in one set of 250 iterations for the high/low ORG classes, the lowest classification 

error rate was 0.272 and the highest error rate was 0.351.  I therefore retained for each model, the 

one of 250 iterations with the lowest classification error to use for predicting classes across the 

Park.  I then performed leave-one-out cross validations and created 100 models for each plot that 

was left out to create an average classification accuracy based on 15,100 tests (100×151 plots) 

per fuel type. 

I used the AsciiGridPredict function in the R yaImpute package (Crookston and Finley 

2008) (http://cran.r-project.org/web/packages/yaImpute) to apply the models and create maps of 

the 6 surface fuel classes (3 pairs of high/low) across the park.  The maps had moderate fine-

grain interspersion of classes into areas dominated by other classes.  To simplify my maps, I 

removed the dispersed pixels using the majority filter based on the eight surrounding grid cells in 

ArcMap 10.1.   

 

2.4.10 Definition and Mapping of Fuelbeds 

I built 29 final fuelbeds by overlaying and combining the surface fuel and structure class 

data layers.  All combinations of low and high surface fuel loadings (surface fuel combinations) 

and forest structure classes were mapped and visually assessed.  To reduce complexity in the 

results and to avoid false precision at the fine scale of the data, infrequent surface fuel 

combinations (less than 1000 occurrences over the park) were lumped with spatially adjacent 

surface fuel combinations within the same forest structure classes.  For example, an infrequently 

occurring fuel combination of low ORG, high SW, and low LW in a woodland structure class 

was lumped with a frequently occurring, adjacent woodland class containing low fuel loadings in 
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all classes.  The consolidated fuelbed was labeled “Woodland with low ORG and low LW”.  In 

other cases, SW and LW fuels were lumped together, and the fuel class became “WF” (all woody 

fuel). 

 

2.4.11 Assigning Values to Fuelbeds 

I plotted the continuous surface fuel loadings from the field data to determine the low and 

high surface-fuel values for each fuel class and found that the distributions of the loadings were 

approximately bell-shaped.  I used the 25th and 75th percentile values of each distribution as the 

median values for the low and high fuel classes respectively, thereby adjusting for right- or left-

skew of the distributions.  To assign values for lumped classes, such as for SW in the Woodland 

with low ORG and LW (example above), I used the median value (50th percentile) for the full 

range of the fuel class.    

The canopy characteristics (species, density, diameter, height, and height-to-live-crown 

of trees per canopy strata) from 291 field plots were overlaid and matched to the fuelbed map by 

their location.  Twenty-nine field plots were eliminated due to mismatching structures (e.g., 

designated shrub plots in multistory forest fuelbeds).  The canopy characteristics from the final 

262 field plots were assigned to the fuelbeds.  The field data are summarized by fuelbed in 

Appendix 1.  Canopy characteristics for fuelbeds with little or no corresponding plot data were 

imputed from adjacent fuelbeds and the vegetation map (Nielson et al. 2021).  The imputed 

values are indicated in Appendix 1 in italics. 

Surface fuel loadings and structural characteristics from the field plots were used to 

define fuelbeds for the three additional vegetation structure classes.  Although Nielsen et al. 

(2021) differentiated among several different shrub and meadow vegetation types, I combined 
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them into single shrub and meadow vegetation types, because the field plots did not adequately 

sample the types identified by Nielsen et al. (2021) for my modeling to differentiate them. 

 

2.4.12 Integration with the Fuel Characteristic Classification System  

Each fuelbed represents a unique combination of surface and canopy fuels, vegetation, 

and structural characteristics, which I designed to be compatible with the FCCS, not only to 

derive the fire and fuel potentials for Mount Rainier, but also as a repository for the data that I 

collected on fuel characteristics throughout the Park.  Unlike traditional FCCS fuelbeds, in which 

the vegetation type comprises the foundation to which the ranges of fuel load values are assigned 

(Riccardi et al 2007), my fuelbeds were constructed from fuel loadings and structure 

characteristics, and the vegetation types were assigned secondarily.    

 

2.4.13 FCCS Fire Potentials 

I entered the fuelbeds as “user-defined” fuelbeds into the Fuel and Fire Tools (FFT) 

software application (Fire and Environmental Research Applications Team 2020), which 

integrates FCCS and fire effects modeling programs in order to calculate the FCCS fire 

potentials for each fuelbed.  Each fuelbed has a fire potential based on three indices: 1) surface 

fire behavior potential (FBP), which is the maximum spread and flame length potential for 

surface fire, 2) crown fire potential (CFP), defined as the weighted average of the potentials for 

surface fire to reach the canopy layer and carry through the canopy, and the relative rate of 

spread, and 3) available fuel potential (AFP), which represents the sum of fuel loadings in all 

combustion phases (flaming, smoldering, and residual smoldering) that is available to burn 

(Sandberg et al. 2007).  
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To make a user-defined fuelbed in FCCS, it is necessary to start with one of the FCCS 

default fuelbeds in the program and change the values for the fields of interest for which specific 

data has been collected.  I used FCCS fuelbed #238—Pacific silver fir-mountain hemlock forest 

(Prichard et al. 2011)—as the default fuelbed; values from the FCCS fuelbed were held constant 

except for the canopy, woody fuels, and litter and duff strata, which were replaced with values 

from my field data.  The following additional changes were made to fuelbeds whose structure 

class was one of the three additional vegetation structure fuelbeds: 1) species compositions of the 

shrub and non-woody fuels strata were changed to wetland species for the riparian fuelbed, 2) 

shrub density and species composition of the shrub stratum were manipulated for the shrubs 

fuelbed, and 3) the median organic fuel loading of the meadow fuelbed was increased to reflect 

the substantially higher fuel loading in this type than was found in any of the other fuelbeds.  I 

added a “very high” fuel load class on the data table to represent the higher fuel loading in the 

meadow fuelbed.  Fuel moisture was held constant for all fuelbeds.   

 

2.5 Results 

2.5.1 Structure Classes and Map 

The nine structure classes, comprising six non-riparian forest classes from LiDAR and 

three additional vegetation structure classes, have distinct combinations of canopy heights, 

rumple (rugosity), and cover values (Figure 2-4).  The median canopy heights (P95) and canopy 

base heights (P25) of the forest classes increase from lowest heights in the woodland to highest 

heights in the tall topstory class.  The two multistory and one tall topstory classes each have 

equally high total canopy cover values, but the multistory classes have highest cover below 32 

meters, whereas the tall topstory cover is highest in the canopy >32 m strata.    
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The map of the structure classes illustrates the differences in canopy structure across 

Mount Rainier National Park (Figure 2-5).  Shorter forest structure classes occur at the highest 

elevations, whereas the tallest forest types are most prevalent at lower elevations.  The map also 

illustrates the influence of climate on the canopy structure classes, as evident in the 

disproportionate distribution of open woodland on the drier east side of the Park, and tall 

topstory on the moist west side.    

 

 
 

 

Figure 2-4.  Box plots of structural class characteristics.  LiDAR-derived height (P95 = dominant 

tree height, P25 = canopy base height), rumple (rugosity), and canopy cover of the forest 

structural classes (1–8).  Other map-derived types are shown for reference.  Total canopy cover 

>2 m is not used in the classification – shown to compare total cover between classes.  Bold lines 

in box plots show median values; bottom and top of boxes show 25th and 75th percentile values.   
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Figure 2-5.  Map of nine distinct structure classes distributed across Mount Rainier National 

Park. Six forest structures are derived from LiDAR and classified by tree height (95th percentile 

return height), canopy base height (25th percentile return height), and rumple (rugosity) using 

hierarchical clustering.  Three additional vegetation structure classes (riparian, shrubs, and 

meadow) are from the vegetation map (Nielsen et al. 2020). 

 
 

2.5.2 Surface Fuel Models and Map 

Both linear regressions and random forest explained less than 29% of the variation in 

continuous values for the surface fuels (Table 2-2).  The linear regressions performed better than 

random forest (RF), as shown in the higher R-square values for linear regression compared to the 

proportion of deviance explained (PDE) for RF.  This is especially true in the case of small 

woody fuels (linear R2 = 0.29, RF PDE = 0.08), although I was aiming for a higher level of 
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accuracy (> 60%).  Classification of the surface fuels into high and low classes above and below 

the median values per fuel class was more successful.  Classification accuracies for the best 

models selected from 250 iterations ranged from 68.2% for small woody fuels to 78.2% for 

organic fuels and decreased slightly in all classes with cross validation.  

 

Table 2-2.  Results of regressions and classifications for surface fuels (ORG = litter and duff, SW 

= 1- to 100-hour small woody fuels, LW = 1000-hour large woody fuels) with median values for 

each fuel type shown.  Random forest (RF) and linear regression showed poor ability to predict 

continuous values for surface fuels (low PDE (proportion deviance explained) and R-squared), 

whereas classification of surface fuels into high/low classes based on median values with RF was 

more successful.   

 
 

The predictors of high/low surface fuel classes are listed in order of importance using the 

Gini index in random forest (Figure 2-6).  The most influential predictors for the organic surface 

fuel classes were related to water balance (precipitation, aet, deficit), temperature, and aspect 

measured at the 270-m scale.  The most influential predictors for small woody fuel classes were 

related to height of the canopy, overall canopy cover, curvature measured at the 270-m scale, and 

topographic position measured at the 100-m scale.  The most influential predictors for the large 

woody fuel classes were related to measures of canopy cover, canopy height, and variance in 

canopy height.   

 

  

Quantitative models using 
continuous values  

RF High/Low  
classification accuracy 

Surface fuels 
classes 

Median value 
kg/m2 

RF 
 PDE 

Linear 
R2 

Original 
models 

Cross-
validation 

ORG 5.4 0.15 0.24 78.2% 73.8% 

SW 0.7 0.08 0.29 68.2% 61.6% 
LW 2.7 0.19 0.23 77.5% 74.8% 

      
Significant (p ≤ 0.05) linear regression predictors  

ORG St. dev. return height, p75 return height, precipitation, aspect 270 m 

SW Canopy cover >2 m, slope 270 m  
LW p75 return height   
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Figure 2-6.  Relative importance of predictors to classification of surface fuels into high and low 

classes (larger value indicates greater importance) using the Gini index in random forest.  Order 

of predictors shown is for the random forest model with the highest correct classification rates 

selected from 250 models.  All predictors (defined in Table 1) were run for each fuel class, but 

only predictors with values above zero are listed. 

 

The map of the distribution of surface fuel load combinations (Figure 2-7) illustrates 

differences in the locations of fuel combinations across the Park.  I sorted the map colors based 

on the SW class, which has the highest contrast between fuel loads on the west side (high fuel 

loads) and east side (low fuel loads).  There are also higher ORG fuel loads on the west side, but 

alpine shrublands with high SW fuel loads on the westside are mainly associated with low ORG 

fuel combinations.  The LW fuel loadings were more evenly distributed across the Park.   
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Figure 2-7.  Map of surface fuel classes across Mount Rainier National Park showing the 

distribution of all combinations of high (Hi) and low (Lo) surface fuel classes (ORG = litter and 

duff, SW = 1- to 100-hour small woody fuel, LW = 1000-hour large woody fuel).  Map colors 

are arranged by the SW class, which contains the most east-west contrast. 

 

2.5.3 Fuelbed Map 

The map of the 29 final fuelbeds, which combines the structure and surface fuel maps, 

illustrates distinct locations for different combinations of canopy structures and fuel loads across 

the Park (Figure 2-8).  For example, fuelbed #11 (woodland with low ORG, low LW) is 

primarily restricted to high elevations on the northeast corner of the Park and replaced by 

fuelbeds #22 and #23 (short partly closed forests) elsewhere.  Fuelbed #53 (tall multistory with 

low ORG, low SW) is mainly located in the southeast, whereas fuelbed #62 (tall topstory with 

high WF) is mainly located in the southwest corner of the Park.  The characteristics of each 

fuelbed and the median values for surface fuels are listed in Tables 2-3 and 2-4, respectively.   
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Figure 2-8.  Map of fuelbeds for Mount Rainier National Park based on six structural classes developed from LiDAR, three vegetation 

classes (riparian, shrubs, and meadow) from the vegetation mapping project (Nielsen et al. 2021) and combinations of low (lo) and 

high (hi) surface fuels (ORG = organic/litter and duff, SW = 1- to 100-hour small woody fuel, LW = 1000-hour large woody fuel).
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Table 2-3.  Twenty-nine fuelbeds (FB) from structure and surface fuel combinations (ORG = 

organic/litter and duff, SW = 1 to 100-hour small woody fuel, LW = 1000-hour large woody 

fuel).  Median values for surface fuels; L (low), H (high), VH (very high), and F (full range). 

FCCS fire behavior potential (FBP), crown fire potential (CFP), and available fuel potential 

(AFP) indexed from low to high (0-9).  Percent of study area (%) and hectares (Ha).  3.1% 

(2,149 Ha) of study area not sampled.  

 
FB Structure ORG SW LW FBP CFP AFP % Ha 

11 Woodland L F L 4 5 6 6.2 4,333 

12 Woodland H F L 7 7 7 1.9 1,358 

13 Woodland F F H 6 6 9 0.4 298 

21 Short partly closed forest L F L 4 5 6 4.2 2,979 

22 Short partly closed forest H F L 7 6 6 4.3 2,992 

23 Short partly closed forest L F H 4 7 9 0.8 535 

24 Short partly closed forest H F H 7 6 9 1.1 797 

31 Short to mid-height multistory H L F 7 6 8 3.8 2,668 

32 Short to mid-height multistory H H H 7 5 9 2.7 1,926 

33 Short to mid-height multistory L L F 4 5 7 2.0 1,375 

34 Short to mid-height multistory F F L 6 5 7 2.2 1,522 

35 Short to mid-height multistory L H H 4 4 9 1.0 689 

41 Mid-height partly closed forest F H L 5 5 7 3.0 2,134 

42 Mid-height partly closed forest L F H 4 4 9 4.8 3,380 

43 Mid-height partly closed forest H F H 7 5 9 6.0 4,231 

44 Mid-height partly closed forest L L L 4 5 7 3.4 2,411 

45 Mid-height partly closed forest H F L 7 4 6 2.7 1,874 

51 Tall multistory H L F 7 6 9 6.7 4,690 

52 Tall multistory H H F 7 6 9 2.2 1,560 

53 Tall multistory L L F 4 4 7 3.5 2,459 

54 Tall multistory L F F 4 5 9 1.6 1,136 

55 Tall multistory L H F 4 2 7 0.7 480 

61 Tall topstory F L H 6 5 9 3.1 2,214 

62 Tall topstory F H H 5 5 9 3.2 2,240 

63 Tall topstory F H L 5 6 9 0.6 430 

64 Tall topstory L F F 4 7 9 0.9 628 

70 Riparian F F H 6 4 9 4.8 3,354 

80 Shrubs F L F 7 0 6 18.4 12,959 

90 Meadow VH L L 7 0 5 0.7 527 
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Table 2-4.  Median values for surface fuel classes.  Median (minimum, maximum) kg/m2 for 

surface fuel classes (ORG = organic/litter and duff, SW = 1 to 100-hour small woody fuel, LW = 

1000-hour large woody fuel). 

 

2.5.4 Fire Potentials   

The FCCS fire potentials ranged from very low (0) to very high (9), with the majority 

being moderate to high across all structures and fuel loadings (Figure 2-9).  Surface fire behavior 

potentials (FBP) were generally high, with scores ranging from 4 to 7.  Unlike the other fuel 

potential maps, there was a noticeable difference between FBP scores from east to west; with 

scores of 4 mainly located on the east side, and scores of 7 prominent in the west.  Across the 

Park, 11 fuelbeds (20,403 ha, 29% study area) with low ORG received a moderate FBP score (4), 

and 11 fuelbeds (35,572 ha, 51% study area) with high (10 fuelbeds) and very high (1 fuelbed) 

ORG received a high FBP score (7).    

Crown fire potential (CFP) varied the most across the fuelbeds, with shrubs and meadows 

receiving the lowest score (0), fuelbed #55 (tall multistory) receiving a low score (2), and three 

fuelbeds with a high score (7).  The low score for the tall multistory is questionable because there 

is only one plot associated with this fuelbed, which has an uncharacteristically low canopy 

density and high height-to-live crown for a multistory canopy.  The largest proportion of the 

study area had a moderate CFP score of 5 over 11 fuelbeds (26,500 ha, 38% study area).  The 

lowest scoring fuelbeds were most prevalent in the south-central portion of the park.  Moderate 

and high crown fire potential scores were fairly evenly distributed across the Park. 

Surface Fuel Class Low High Very High Full Range 

ORG kg/m2 2.3 (0, 5.6) 9.8 (5.6, 38.9) 13.6 (8.1, 38.9) 5.6 (0, 38.9) 

ORG depth (cm) 8.1 (0, 19.3) 3.3 (1.9, 13.1) 18.6 (4.6, 13.1) 7.6 (0, 1.9) 

SW kg/m2 0.3 (0, 0.7) 1.2 (0.7, 4.3) NA 0.7 (0, 4.3) 

LW kg/m2 0.3 (0, 2.7) 9.4 (2.7, 56.3) NA 2.7 (0, 56.3) 
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Figure 2-9.  Fire and fuel potentials across Mount Rainier National Park.  Distributions and 

relative percentages of surface fire behavior potential (FBP), crown fire potential (CFP), and 

available fuel potential (AFP) on a scale of 0-9 (low to high), class 99 (other, not evaluated).   
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Available fuel potential (AFP) scores were relatively high for all fuelbeds, ranging from 

moderate (score of 5) to very high (score of 9).  Over half of the fuelbeds (15 of 29; 31,461 ha, 

40% study area) had a score of 9, including all the tall topstory and the majority (3 of 5) of the 

tall multistory structural classes.  The highest AFPs (score of 9) were more prevalent on the west 

side, but they were well represented throughout the Park.  

 

2.6 Discussion 

2.6.1 Distributions of the Fuelbeds and Fire Potentials 

The fuelbed and fire potential maps illustrate variations and patterns in the distributions 

of fuel and fire characteristics across Mount Rainier National Park.  The most prominent source 

of variation in the fuel distributions is the influence of the east-west precipitation gradient along 

the Cascade Crest, creating wetter conditions on the west side of the Park and drier conditions on 

the east side.  These conditions correspond to low frequency high-severity fires in the west 

giving way to more frequent mixed-severity fire on the eastern slopes of the Park (Hemstrom and 

Franklin 1982, Agee 1993, Siderius and Murray 2005).   

The influence of the east-west gradient was evident in the fuel loadings corresponding to 

several fuelbeds that were disproportionately located on either side of the Park.  Fuelbed #62, 

which was concentrated on the west side, had high SW and LW fuels, and a very high FBP 

(score of 9), whereas fuelbed #11, located primarily on the east side, had low ORG, LW, and 

AFP (score of 6).  The surface fuel map also showed higher fuel loads on the west side of the 

Park, presumably due to less frequent fire (as seen in the fire records (USDI BLM 2020) and 

higher moisture conditions that support more vegetative biomass (Gholz 1982).  The higher fuel 

loadings in the west were particularly evident in the SW fuel class, and noticeable in the ORG 
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(litter and duff) class as well.  These higher fuel loadings in the SW and ORG classes, which are 

the primary carriers of surface fires (National Wildfire Coordinating Group 2021), corresponded 

to higher FBPs on the west side than to the east (scores of 7 vs. 4).   

The influence of the east-west gradient was less evident in the distributions of the other 

fire potentials (CFP and AFP), and most fuelbeds were more evenly distributed throughout the 

Park.  However, I expect that the east-west precipitation gradient still influences fire frequency 

and severity in these fuelbeds, although this is not evident on the maps because fuel moisture is 

not accounted for in the fuelbeds and fire potentials (but rather, can be adjusted for in FFT).  

Higher fuel moistures due to the maritime climate on the west side of the Park likely dampen 

fuel flammability there.   

Beyond the scale of the Park, Littell et al. (2018) warn that climate change will have the 

largest effect on wildfire area burned in areas where climate, rather than fuels, is the limiting 

factor.  My study confirms that AFP is high throughout Mount Rainier National Park, so the Park 

is not fuel limited.  The fine scale of the fuelbed map allows me to determine more precisely 

where the largest impacts and changes will occur within the Park.  In the short term, I expect that 

warmer and drier conditions associated with climate change will be more pronounced on the 

drier east side of the Park, resulting in larger and more frequent fires (Littell et al. 2009, 

Halofsky 2020).  Larger fire growth is particularly associated with having more days in the early 

and late summers with low vapor pressure deficit (VPD) (Sedano and Randerson 2014, Higuera 

and Abatzoglou 2020).  However, if the trend towards warmer and drier summers continues 

(Mote et al. 2014), then I expect to have larger stand-replacing fires on the west side eventually 

due to the greater FBP, higher fuel loadings, and fewer fire-adapted species.  Littell et al. (2018) 

and Kennedy et al. (2021) suggest that this trend could be short-lived because the high AFP and 
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FBP that increased fire behavior will likely consume these fuels after one or two large fires; then 

the balance could shift towards more fire on the east again.   

 

2.6.2 Benefit of LiDAR 

This work highlights the challenges and benefits of merging LiDAR and field data 

collection to measure and map fuel characteristics.  The LiDAR data did not prove to be as 

useful as I had hoped for mapping surface fuel classes beyond a coarse resolution (high and low 

classes); however, even this coarse resolution enabled me to compare fuel loadings across the 

Park and see differences in fire potential at different locations.  The LiDAR data provided fine-

scale canopy characteristics that I was able to map directly to develop the structural classes and 

use indirectly to inform the surface fuels map.  The combination of the structural classes and the 

surface fuel combinations provided 29 distinct, local-scale fuelbeds that greatly expand maps and 

other geospatial information related to fuels and wildland fire at Mount Rainier.  

When I began this project, I had expected that surface fuel loads would be related to the 

forest overstory structure, which was measured in high fidelity with LiDAR data.  I was 

unsuccessful in predicting specific values for surface fuels and had to fall back to predicting 

high/low fuel classes based on median values by adding climate and topographic variables to 

structure.  Jakubowksi et al. (2013) similarly were unsuccessful in predicting surface fuel loads 

using airborne LiDAR data in Sierra Nevada forests in California, USA.  Other researchers have 

used field data and found that surface fuel loads are not well correlated with the overstory forest 

structure (Keane et al. 2012, Lydersen et al. 2015), although Hall et al. (2006) and van 

Wagtendonk and Moore (2010) found stronger relationships.   

Kane et al. (2015) found that climate and topography were important predictors of fire 
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pattern in the Sierra Nevada, which may reflect underlying patterns of fuel deposition related to 

broad patterns of forest structure.  Miller and Urban (1999) modeled interactions between fuels, 

climate, and elevation, noting that fire spread (which affects fuel distributions) was limited by 

fuel moisture and more compact needle litter from short-needled species at higher elevations.  

These relationships among topography, climate, and species clearly influenced the distribution of 

fuelbeds at Mount Rainier National Park as well (e.g., the smaller volume of SW on the east side 

of the mountain, especially in the low-statured fuels at high elevation).  The fact that this was 

reflected in the fuelbeds, and their fire potentials, suggests that high/low classes adequately 

reflected important differences in fire behavior potential.  

Although the use of airborne laser scanning (ALS) data has increased the efficiency of 

mapping canopy characteristics directly in recent years (Mauro et al. 2021), there have been few 

improvements in mapping surface fuels directly with remotely sensed data (Gale et al. 2021).  

One exception to this is in the detection of large diameter coarse woody debris (CWD) using a 

combination of height, pulse-based filters, and linear pattern recognition (Jarron et al. 2021).  

This innovative technique for detecting CWD could be useful for both improving fuel mapping 

efforts and detecting wildlife habitat for birds, mammals, amphibians, and reptiles (Bull 2002). 

 

2.6.3 Management Implications  

The fuelbed and fire potential maps can be used to identify management concerns and 

restoration opportunities.  I use the maps to consider two resource management issues and 

potential strategies for conservation. 
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Northern Spotted Owl Habitat: 

Fire has been identified as the greatest threat to the 33,185 hectares of contiguous habitat 

for the threatened and endangered northern spotted owl at Mount Rainier National Park (NPS 

2019).  This resource concern is validated by the relatively high FBP (ranging from 6 to 9) 

throughout the Park, and specifically in the tall multistory and tall topstory fuelbeds (7 of 9 

fuelbeds with FBP scores of 9) within their preferred habitat (Forsman et al. 1984).  If warmer 

and drier conditions increase with climate change, then these low- to mid-elevation forests, 

dominated by non-fire adapted species such as western hemlock, are susceptible to large stand-

replacing fires (Agee 1993).  I examined the fuelbed and fire potential maps to identify concerns 

and strategies for managing wildfires within several different fuelbeds in preferred spotted owl 

habitat.     

1) Tall multistory fuelbed #53 (low ORG, low SW) clustered on the southeastern slopes 

of the Park has the lowest combination of fire and fuel potentials (FBP 4, CFP 4, AFP 7) of the 

tall multistory fuelbeds, other than fuelbed #55, which has CFP of 2, but is more dispersed and 

has fewer total acres.  The moderate FBP of fuelbed #53 may provide an opportunity for 

managers to backburn towards an oncoming wildfire to prevent fire spread into habitat with 

higher fire and fuel potentials such as fuelbeds #51 or #52 (tall multistories with high ORG, each 

scoring 7, 6, and 9 for FHB, CFP and AFP respectively).  This action would need to be evaluated 

with consideration for local onsite fire weather and would be advisable only as a measure to 

minimize fire size and spread.   

2) Tall topstory fuelbed #62 (high SW and LW) is concentrated in the southwest corner 

of the Park, providing a contiguous fuelbed of preferred spotted owl habitat.  It has moderate 

FBP and CFP scores (5 each), but it has a high AFP (9) that makes it vulnerable to high-intensity 
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wildfire with warmer and drier conditions.  If a wildfire were to occur in this area under current 

climate, it may be preferable to allow it to burn a smaller footprint of this prime habitat under 

moister conditions, thus providing a barrier to fire spread in the future.   

 

Whitebark Pine:  

Whitebark pine is a fire-dependent species that benefits from frequent low- to moderate-

severity fires that maintain canopy openings (Keane et al. 1990, McDowell 2010).  Its population 

is in decline throughout North America due to fire exclusion, insects (especially mountain pine 

beetle (Dendroctonus ponderosae)) and pathogens (white pine blister rust (Cronartium ribicola) 

(Keane and Arno 1993, Tomback et al. 2001)).  The impact on whitebark pine from higher 

intensity fire is complicated (Siderius and Murray 2005).  Whitebark pine out-competes other 

species in recolonizing large, burned areas, because Clark’s nutcrackers (Nucifraga columbiana), 

their primary seed dispersers, use openings from stand-replacing fires to cache seeds, and can 

carry the seeds up to 22 kilometers (Keane et al. 1990, Tomback et al. 2001).  However, larger, 

and more severe fires may eliminate most of the seed source in dwindling populations.  In a 

study of seedling regeneration following two fires in the northern Cascades, areas with the 

greatest canopy cover of whitebark pine and moderate burn severity had the highest probability 

of seedling presence (McDowell 2010).  McDowell (2010) also found that seedling densities 

increased with char depth and greater distance into the core burn area, suggesting that moderate 

severity fires may create opportunities for whitebark pine regeneration. 
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Figure 2-10.  Fuelbeds in subalpine fir / whitebark pine vegetation map class (Nielsen et al. 

2021) showing that potential whitebark pine habitat is predominantly Fuelbed #11: woodland 

with low fuel loads. 

 

Woodland fuelbed #11 (low ORG, low LW), located on the northeastern slopes of Mount 

Rainier, is the predominant fuelbed in potential whitebark pine habitat, as shown by clipping the 

fuelbed map to the subalpine fir / whitebark pine vegetation mapping class (Figure 2-10). 

Whitebark pine is likely to tolerate the moderate FBP (4) and CFP (5) in fuelbed #11, but the 

higher than median AFP (6) could precipitate lethal higher intensity fire in association with 

warmer and drier conditions (climate change).  In the event of a wildfire, or if prescribed burning 

is an option, it may be helpful to rake fuel accumulations away from the bases of the pines to 

reduce fire intensity.    
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2.6.4 Using the Map 

I encourage resource and fire managers to utilize the fuelbed and fire potential maps to 

identify additional areas of interest to the Park, as I suggest for spotted owl habitat protection and 

whitebark pine restoration.  The data from the fuelbeds can also be used as input to fire spread 

models during wildfire events.  The user-defined fuelbeds are stored in the online NPS datastore 

https://irma.nps.gov/DataStore/ and can be imported into FFT to derive fire behavior statistics 

using local weather during a fire incident.  The median fuel load values from the fuelbeds can 

also be used in other fire spread models. 

Unlike other fuel maps, the fuelbeds for Mount Rainier are based on local data, but some 

of the values for the fuelbeds are derived from few or no field plots (e.g., 1 plot for fuelbed #55: 

tall multistory with low ORG, high LW).  Fuelbeds with little or no data can be identified by 

inspecting Appendix 1.  Although the map and fire potentials can be used as a means of 

identifying areas of concern, they cannot replace the need for field reconnaissance.  However, 

they do provide a broad-scale assessment of potential hazards, indicating where field 

reconnaissance might be most valuable.   
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Chapter 3. Fire-climate interactions: local controls and management implications for moist 

and dry conifer forests of the Pacific Northwest 

3.1 Abstract  

I used my research from Chapters 1 and 2 to inform a broader investigation of the 

influence of bottom-up controls on fire across the forests of the Pacific Northwest, with 

particular focus on late-successional stands on federal lands.  There has been a significant 

increase in fire activity in the western United States over the past two decades, attributed to 

climate change, but much of the data that support this attribution is from fires in frequent, low-

severity fire regimes.  Recent increases in fires with mixed- and high-severity fire regimes of the 

Pacific Northwest have highlighted the importance of understanding local controls on fire-

climate interactions in less frequent fire regimes.  I looked at the influence of fuels and 

topography as bottom-up controls on fire frequency across the continuum of moist, high-severity 

fire regimes to dry, low-severity fire regimes from the west side of the Olympic Mountains to the 

east side of the North and Central Cascades.  Using this examination of bottom-up controls, I 

identify and describe a “fuel management continuum” based on retaining fuel moisture in west-

side forests through tactical suppression, and limiting fuel loading in dry, east-side forests 

through well-tested fuels treatment strategies.  In mixed-severity forests between these two 

extremes, there are more opportunities to utilize managed wildfire.  Fuel treatments on the west 

side, outside of the wildland-urban-interface, are ill-advised because they would increase fuel 

aridity rather than preserve fuel moisture.  Although none of the strategies (suppression, 

managed wildfire, and fuel reduction treatments) are new, the rationale behind when to use them 

is based on ecologically informed relationships between top-down and bottom-up controls.   
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3.2 Introduction 

Wildfire area burned (WFAB) has increased and will continue to increase throughout the 

western U.S. due to climate change (McKenzie et al. 2004; Littell et al. 2009, 2018), although 

the distribution, effects, and implications of this increase depend upon fire-regime characteristics 

and local controls on fire behavior.  Most of the increase in WFAB has been in large fires outside 

of the maritime Pacific Northwest, although several recent mixed- and high-severity fires in late-

successional stands on the west side of the Cascade Range (hereafter “Cascades”) have alerted 

researchers and managers of the need to project the effects of more frequent fires in higher 

severity fire regimes and to infer implications for management (e.g., Halofsky et al. 2018a, 

2018b; Halofsky et al. 2020; Case et al. 2021; Gaines et al. 2022).  An inherently different 

approach to management from that for low-severity fire regimes may be best.  Optimizing the 

suitability of management in different fire regimes requires understanding the influence of 

bottom-up controls (e.g., fuels, topography) on fire frequency, severity, and spatial pattern and 

the interactions between these and top-down controls (e.g., temperature, precipitation) for 

different fire regimes (Hanan et al. 2021, Kennedy et al. 2021).   

In this chapter, I examine the idea of a continuum of aridity as quantified in various 

metrics (e.g., water-balance deficit) and representing the combined effects of temperature and 

precipitation on variables, such as fuel moisture, that are directly associated with fire 

(Stephenson 1998, McKenzie and Littell 2017, Hanan et al. 2021).  I use this aridity continuum 

to inform fire management strategies with respect to fire regimes across the Pacific Northwest.   

I focus especially on fire management strategies to protect wilderness character on 

federally protected lands, given the increased risk to late-successional forests with climate 

change (Halofsky et al. 2018a).  Old-growth forests of the Pacific Northwest have been degraded 
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extensively due to clear-cut logging and development during the mid- to late-20th century 

(Reilly and Spies 2015, Gaines et al. 2022) increasing the importance of maintaining late-

successional habitat for old-growth dependent species (e.g., northern spotted owl (Strix 

occidentalis caurina), marbled murrelet (Brachyramphus marmoratus)) on federally protected 

lands. 

 

3.3 Fire Regimes of the Pacific Northwest 

3.3.1 Moist and Dry Forests 

Forests and fire regimes of the Pacific Northwest are strongly influenced by the 

orographic effects of the North Cascade and Olympic Mountains, which create a precipitation 

gradient from west to east (McKenzie 2020).  Mean annual precipitation decreases tenfold from 

west to east, from over 250 cm on the Olympic Peninsula to less than 25 cm in eastern 

Washington (Gedalof et al. 2005).  Moist forest types (e.g., the extensive “Douglas-fir zone” 

dominated by Douglas-fir (Pseudotsuga menziesii var. menziesii), and the later-successional 

species western hemlock (Tsuga heterophylla) and western redcedar (Thuja plicata) occur on the 

west sides of the mountains, and drier forest types (e.g., Douglas-fir / ponderosa pine (Pinus 

ponderosa) mixed conifer forests) are located on the lee sides of the mountains, in the rain 

shadows.  These forests and their fire regimes are commonly referred to as “west side” and “east 

side” respectively, although they are more accurately described as “moist” and “dry” because 

both types are found on either side of the Cascade Range, where the split between west and east 

side is commonly made (Franklin and Johnson 2012).  The fire regimes grade from high severity 

on the moist, west side to low severity on the dry, east side (Figure 3-1). 
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Figure 3-1.  Map of fire regimes of the Olympic and Cascade Mountains in the Pacific Northwest 

with data from LANDFIRE (2022).  Low frequency, high-severity fires (green) dominate moist 

forests on the west side of the Cascades.  Mixed-severity fire occurs on east sides of mountains 

and further inland. High frequency, low-severity fire regimes occur on the eastern slopes of the 

Cascade Range.  
  

The mild coastal climate on the west side of the Olympic Mountains makes their low-

elevation coniferous forests the wettest in the United States, characterized by infrequent, high-

severity fires (Franklin and Dyrness 1988), whereas drier forests, which have a mixed-severity 

fire regime, occur in the rain shadow to the northeast (Henderson et al. 2011, Halofsky et al. 

2018a).  Farther inland and south, moist coniferous forests with infrequent, large, high-severity 

fires are common on both sides of Mount Rainier, but subalpine forests and lower-elevation 

coniferous forests with more frequent, mixed-severity fires occupy the eastern flanks of the 

mountain (Hemstrom and Franklin 1982, Siderius and Murray 2005).  Forests in the North 
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Cascades follow this same pattern, with moist forests with less frequent, stand-replacing fires in 

the maritime climate of the western Cascades and increasingly drier forests with more frequent, 

lower-severity fire to the east.  Dry, mixed-conifer forests are on the east side of Ross Lake, still 

west of the Cascade Crest, but in the rain shadow of high mountains farther west: Mt. Baker 

(3286 m) and Mt. Shuksan (2783 m) (Agee et al. 1986).  Low-elevation mixed-conifer forests on 

the east side of the Cascade crest, where I conducted the fire history study for Stehekin in Lake 

Chelan National Recreation Area (Chapter 1), have more frequent and lower mixed-severity fire 

than at Ross Lake.  Even farther east, in the Okanogan highlands, frequent, low-severity fires 

were common historically (Wright and Agee 2004, Hessl et al. 2004).  This area has recently 

experienced the largest fires in the state of Washington (e.g., 2015 Okanogan Complex, 123,341 

ha). 

 

3.3.2 High-Severity Fire Regimes 

Moist forests in the Pacific Northwest have high-severity fire regimes.  In late-

successional forests on the west side of the Cascades, fuel loads are typically high due to the 

predominance of dense, multi-storied stands of mature conifers and long fire-free intervals (e.g., 

mean fire interval (MFI) of 465 years at Mount Rainier National Park (Hemstrom and Franklin 

1982) during which fuels accumulate.  These heavy fuels are typically damp and shaded 

throughout the summer in this maritime climate, and prone to combustion only during extreme 

and uncommon weather events (high winds and long, hot, and dry periods (Hemstrom and 

Franklin 1982, Agee and Huff 1987, Franklin and Dyrness 1988, Agee 1993).  Therefore, moist 

forests with high-severity fire regimes are considered “climate limited,” or “flammability 

limited” (Littell et al. 2009, 2018; McKenzie 2020, chapter 6 therein).  When fuel moisture is 
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low (e.g., drought), and ignition sources (e.g., lightning) are available, then these abundant, 

continuous fuel loads can affect large, stand-replacing fires (Littell et al. 2009, McKenzie and 

Littell 2017).  The Yacolt fire (1902) in southwestern Washington and the Tillamook fire (1933) 

in coastal Oregon were high-severity fires that rapidly burned hundreds of thousands of hectares, 

exemplifying the potential for large fires in moist, west-side forests (Pyne 1982, Gray and 

Franklin 1997, Franklin and Halpern 2000).   

 High-severity fires are  “stand replacing” because they kill the trees, but in most cases the 

trees die because they are not fire-adapted species (with exceptions; Douglas-fir is relatively fire 

resistant), rather than due to the intensity of the fire (Agee 1993).  Even low-intensity fire can 

kill the trees, which then remain standing for years to decades, increasing the potential for 

multiple reburns, which are historically common in high-severity fire regimes (Agee 1993, Gray 

and Franklin 1997).   

More commonly, fires are very small in moist forests with high-severity fire regimes due 

to high fuel moisture content.  For example, at Mount Rainier National Park, there were 57 fires 

in 20 years (< 3 fires per year) between 2000 and 2019, with an average fire size of 1 hectare 

(USDI 2020).  Fire size ranged from 0.05 to 23 hectares, with only three fires (5%) greater than 5 

hectares (Figure 3-2).  However, there have been a few exceptions to this elsewhere in recent 

years.  For example, the 2015 Goodell Fire at North Cascades National Park was 2837 ha, the 

2015 Paradise Fire at Olympic National Park was 1141 ha, and the 2018 Cougar Creek fire 

burned over 16,600 hectares in the Mount Baker-Snoqualmie National Forest near Mount 

Rainier.   
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Figure 3-2.  Fire frequency across Mount Rainier National Park, 2000–2019.  Three fires marked 

with lightning bolts are over 5 ha: Panther1(2003) = 23 ha, Fan Lake (2018) = 8 ha, Grand Park 

(2009) = 8 ha.  All other fires were <0.5 ha.  

 

 

3.3.3 Mixed- and Low-Severity Fire Regimes 

Forests and fire regimes become increasingly drier in an eastward direction, grading from 

“high mixed severity” west of the Cascades to “low mixed severity” on the western slopes east of 

the Cascades.  As described earlier, this gradation from higher to lower severity is interrupted by 

more abrupt transitions from moist, high-severity forests to drier and lower-severity vegetation 

assemblages on the leeward sides of the mountain peaks.  Dry mixed-conifer forests on the 

western slopes east of the Cascade crest are dominated by a mix of Douglas-fir and ponderosa 

pine, the ratio of which becomes increasingly more dominated by ponderosa pine to the east.  

This is the transition from the low mixed-severity regime to the low-severity fire regime where 
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historically frequent fires consumed mostly surface fuels, thus maintaining open, park-like stands 

of ponderosa pine in most locations (Weaver 1959, Pyne 1982, Agee 1993). 

In mixed-severity regimes, post-fire levels of canopy mortality range from 30 to 80 

percent (Agee 1993), with closer to 80% latent mortality in high mixed-severity stands, 

compared to as low as 20% in low mixed-severity stands.  Canopy mortality is, by definition, 

less than 30% in low-severity fire regimes (Agee 1993).  Mean fire intervals (MFIs) also shorten 

from 250+ years on the west side of North Cascades National Park (Agee et al. 1986, Prichard 

2003) to ~30 years in Stehekin, as shown in Chapter 1.  MFIs of low-severity fire regimes of the 

eastern Cascades were as low as 6 years (Everett et al. 2000, Wright and Agee 2004,).   

 
Figure 3-3.  32-year fire history in North Cascades National Park Service Complex (1990–2021).  

447 ignitions (red lightning bolts) average 14 fires per year.  Fifty fires were larger than 5 

hectares.  
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As with the other fire characteristics, the historical range of fire sizes across mixed- and 

low-severity fire regimes varied from tens to thousands of hectares, with more frequent large 

fires occurring in the east.  The distribution of fires across North Cascades National Park Service 

Complex for the past 32 years illustrates this range, with primarily smaller, more severe fires in 

high mixed-severity forests, and larger, less severe fires on the east side of the Complex (Figure 

3-3).  

 

3.4 Top-down and Bottom-up Controls 

Climate acts as a broad scale “top-down” control on fires, whereas fuels, topography, and 

ignition sources are “bottom-up” controls, exerting local and mid-scale effects on fire size and 

frequency (Heyerdahl et al. 2001, Kellogg et al. 2008, McKenzie et al. 2011).  Forest fuels exert 

bottom-up control by providing potential energy for combustion at fine scales. varying according 

to their volume, spatial distribution, and vegetation composition (McKenzie et al. 2011).  

Topography acts as a direct and indirect control on fire.  Directly, topography influences fire 

behavior (e.g., rate of spread, flame lengths) on slopes, and as a barrier to fire spread (e.g., scree 

slopes, cliffs) (Dillon et al. 2011).  Indirectly, topography acts as a mid-scale (and multi-scale) 

control because it links the fine-scale variation of fuels to the coarser scale influence of climate, 

via contrasting microclimates associated with slope and aspect (Kellogg et al. 2008).  For 

example, climate heats and dries fuels differently on south-facing versus north-facing aspects. 

The degree to which a fire regime is controlled by top-down or bottom-up controls depends on 

the interplay among the individual controls at different scales (climate, fuels, topography) 

(McKenzie et al. 2011).  For example, topographic complexity acts as a global constraint on fire 

spread in low-severity fire regimes wherein simpler topography leaves climate “unrestricted” as 



95 

 

a top-down control (McKenzie and Kennedy 2012). 

 

3.4.1 Top-down Control: Climate in the Pacific Northwest 

Temperatures in the Pacific Northwest have increased by 0.9°C over the past century 

(1925-2016) (Vose et al 2017) and are expected to increase by 1.7°C to 4.7°C west of the 

Cascades, and 2.0°C to 5.8°C on the east side of the Cascades, by 2099 (Rogers and Mauger 

2021).  Changes in precipitation vary from increasing to decreasing depending on location, 

season and modeling scenario, but models project a decrease in summer precipitation by as much 

as 30% by 2099 (Walsh et al. 2014).   

Climate exerts strong top-down control of fire throughout the western U.S., including the 

Pacific Northwest, in which it influences WFAB at decadal scales (Hessl et al. 2004) and at 

finer, annual and interannual scales related to both current and antecedent drought (Gedalof et al. 

2005).  Atmospheric masses arise from the Pacific Ocean and move eastward where they interact 

with the mountainous terrain of the Cascades and the Rocky Mountains, getting progressively 

warmer and drier as they move inland.  This general pattern can be interrupted by a high-

pressure system (blocking ridge) that diverts moisture from the coast, sometimes creating 

anomalous easterly “foehn” winds that move warm and dry air from the interior to the coast 

(Gedalof et al. 2005).  These winds are often associated with severe storms that precipitate large, 

high-severity fires in west-side forests (Agee 1993).  

The climate variables that are the strongest predictors of WFAB for moist, west-side 

forests differ from those of dry, east-side forests.  On the west side of the Cascades, WFAB is 

strongly negatively correlated with growing season (May–September) precipitation in the year of 

fire, although it is also correlated with antecedent climate: 1-year lagged high winter 
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precipitation and low winter temperature (increased snowpack), and 2-year lagged high winter 

precipitation and low summer precipitation (Littell et al. 2009, 2018).  WFAB on the east side of 

the Cascades, estimated in models of the Northern Rocky Mountain ecoprovince, is correlated to 

summer drought preceded by high winter temperatures (presumably increasing fuel biomass), 

and by 1-year lagged low precipitation and low temperature (Littell et al. 2009, 2018).  

  

3.4.2 Bottom-up Controls: Fuels and Topography  

Fuels act as bottom-up controls differently for moist and dry forests (Littell et al. 2018, 

Hanan et al. 2021).  The distribution and abundance of fuels exert strong bottom-up control on 

fire size and frequency in fuel-limited ecosystems, such as in dry, mixed-conifer forests with 

frequent, low- and mixed-severity fire regimes on the east side of the Cascades (McKenzie et al. 

2006, Kellogg et al. 2008, Littell et al. 2018).  Conversely, fuel moisture, rather than fuel 

loading, acts as the primary bottom-up control on west-side, climate-limited forests that contain 

high volumes of dead and downed fuels, but where fuel moistures are generally too high for fire 

to spread (Littell et al. 2009, Littell et al. 2018, Hanan et al. 2021).  We observe an “aridity 

continuum” in climate drivers of fire as fire regimes change from climate-limited to fuel-limited 

systems (Krawchuk and Moritz 2011, Hanan et al. 2021).   

 

3.4.3 Bottom-up Control: Fuel Moisture in High-Severity Fire Regimes 

Fuel moisture is a powerful bottom-up control on fire behavior in moist forests of the 

Pacific Northwest (Littell et al. 2009, 2018; Ren et al. 2022), as illustrated in the map of recent 

fires across Mount Rainier National Park (Figure 2).  All fires are small, presumably due to the 

high moisture content of the fuels inhibiting fire spread.  The disproportionately higher density 
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of ignitions on the drier east side of Mount Rainier is also related to fuel moisture, in addition to 

increased convective activity and lightning, because lower fuel moistures provide a more 

conducive environment for “positive strikes.” 

In the process of mapping fuels at Mount Rainier (Chapter 2), I considered how fuel 

moisture is controlled by topography, elevation, vegetation structure, and fuel type in 

mountainous terrain.  Fuel type (in particular, size classes of dead fuels, or “time-lag” class) is 

the only direct quantitative link between fuels and climate, whereas there are multiple ways in 

which the other variables act as intermediary mid-scale controls on fuel moisture.  For example, 

mountains are topographic features that interact with climate, creating a precipitation gradient 

that influences fuel (vegetation) and soil moisture.  Topography also influences vegetation 

structure by affecting where plants can grow, which in turn exerts influence on fuel type.   

The diameter of the fuel exerts a strong influence on fuel moisture.  Due to their smaller 

size, small woody fuels (SW; 0.6 - 7.5 cm) rapidly lose their moisture content when relative 

humidity is low and VPD is high, becoming active carriers of fire spread.  In contrast, large 

woody fuels (LW; > 7.6 cm) take over 1000 hours (42 days) of consistent weather conditions to 

gain equilibrium with their environment.  Although LW are not the primary carriers of fire, large 

accumulations of moist fuels can dampen fire spread.  Although organic fuels (ORG; litter and 

duff), are finer than SW, they also may take longer to dry out because they are tightly packed and 

retain moisture from the soil.  This is particularly true of deeper duff layers, which are most 

affected by soil moisture, whereas upper litter layers are more sensitive to atmospheric moisture 

(Zhao et al. 2021). 

Forest structure is another important control on fuel moisture.  Forests with more open 

structures (less canopy density) dry out more quickly due to higher solar radiation and wind, 
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whereas shaded fuels from dense multistory canopies hold fuel moisture longer (Agee et al. 

2000, Cochrane 2003).  It is also probable that shorter forest types will dry out more quickly than 

taller forests with comparable stand densities because they have less canopy biomass to retain 

moisture by stabilizing microclimate.   

 

3.4.4 Bottom-up Control: Fuel loading in Low-Severity Fire Regimes 

Dry east-side forests with mixed- and low-severity fire regimes are fuel limited rather 

than climate limited (Littell et al. 2009, 2018; Hanan et al. 2021).  The climate on the east side of 

the Cascades is arid and conducive to lightning and frequent fires that maintain low volumes of 

surface fuels, making both the distribution and abundance of fuels limiting factors in fire size and 

frequency (McKenzie et al. 2006).  My research (Chapter 1) confirmed the significant 

lengthening of the mean fire interval in the forests of Stehekin during the fire suppression era.  

Clearly, the buildup of surface fuels due to fire suppression has altered fire-climate interactions 

in dry forests in several ways.  Fuels are no longer limiting factors on fire frequency or severity 

in fire-suppressed stands because fuel loadings are uniformly high and continuous, and no longer 

vary along topographic or aridity gradients. 

 

3.4.5 Bottom-up (but Multi-scale) Control: Topography 

Topography controls fire frequency and fire size in dry, east-side forests by constraining 

and facilitating fire spread and by influencing the distribution of fuels (Kellogg et al. 2008, 

Dillon et al. 2011, McKenzie and Kennedy 2012).  The orientation of topography to prevailing 

winds can enhance or limit fire spread in various ways.  For example, intermediate uphill slopes 

perpendicular to wind direction can accelerate fire spread, whereas steeper slopes would impede 
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it.  When slopes are parallel to wind direction, longer “fetches” are possible, often increasing fire 

size when fire spread has no topographic barriers.  Spatial distribution and abundance of fuels are 

controlled by soil moisture that varies with both aspect and slope. 

Metrics of topographic complexity can integrate the effects of individual elements such 

as the orientation with respect to wind.  In general, increasing topographic complexity limits 

climatic controls on fire spread and the ensuing fire sizes (Kennedy and McKenzie 2010, 

McKenzie and Kennedy 2012).  In my fire history research in Stehekin (Chapter 1), although I 

did not focus on fuel loadings, I was able to infer that topographic complexity was a significant 

determinant of fire frequency, evidently by limiting fire spread. 

 

3.5 Effects of Climate Change in Moist and Dry Forests  

I expect (i.e., global and regional models project) that in the next few decades, maritime 

influences will buffer the ecosystems of the Pacific Northwest somewhat against the severe 

effects of a warming climate, in contrast to the American Southwest, for which area burned is 

expected to increase greatly (McKenzie 2020).  Presently, moist west-side ecosystems 

experience large stand-replacing fires when infrequent, hot, dry weather occurs, suggesting that 

if there is more hot, dry weather, that there will be more frequent, higher severity fires (Littell 

2009, 2018).  However, projections of extreme events are much more uncertain than those of 

global averages.  Given that severe west-side fires are associated strongly with those extremes 

(Gedalof et al. 2005), the following must be considered contingent on the relative importance of 

extreme weather versus gradual warming and drying.   

 Greater changes in fire size and severity in moist, west-side forests than on the east side 

should be expected eventually when fuels in these climate-limited (flammability-limited) forests 
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become sufficiently dry, more often, to support fire spread.  In the meantime, the even hotter and 

drier conditions on the east side are expected to exacerbate fire size and frequency.  This will 

occur until these forests become more truly fuel limited, in which case we can expect that the 

lack of fuel (spatial) connectivity and the lower productivity of vegetation will limit fire sizes, 

and WFAB will decrease (Cansler and McKenzie 2014, McKenzie and Littell 2017, Kennedy et 

al. 2021). 

 

3.6 Management Implications 

The difference among controls on fire frequency for low-, mixed- and high-severity fire 

regimes suggests adapting fire management, in the face of climate change, with an ecologically 

informed view of the effects of practices on fire susceptibility, in both the short and long terms.  

Top-down and bottom-up controls on fire regimes lie on an “aridity continuum” from climate 

limited (west) to fuels limited (east), corresponding to fuel moisture and fuel loading, 

respectively.  I suggest that there is a corresponding “fuels management continuum” across the 

fire regimes of the Pacific Northwest (Figure 3-4).   
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Figure 3-4.  Diagram of the fuels management continuum: Moist forests on the west side of the 

Cascade Range of the Pacific Northwest are flammability limited due to high fuel moisture 

(bottom-up control) that limits fire spread.  Fuel loads are highest in the west (green triangle) and 

lowest in the east (green and yellow striped triangle), and live and dead fuel moisture content is 

maintained by multistory shaded canopy fuels that hold moisture.  Thinning of fuels on the west 

side increases flammability through evapotranspiration.  In contrast, the east side of the Cascades 

is fuel limited, maintained by frequent, low-severity fire (yellow and yellow/green triangle = 

high/low frequency in east/west).  Fire suppression led to fuel accumulation (dotted green line).  

Fuel reduction in the east reduces fire severity in fire-suppressed and climate-altered stands.  

Multiple strategies to maintain a spectrum of fuel moisture and loading are appropriate in mixed-

severity forests that occur between east- and west-side forests.  

 

On the far west (moist) end of the continuum, controlled by fuel moisture, fire size is 

limited by moist, dense forest and fuel conditions that are rarely conducive to large, high-severity 

fires, making them “flammability limited” (Littell et al. 2018).  On the far east (dry) end, 

controlled by fuel loading, fire size is limited by sparse fuels where open, park-like stands 

predominate that were historically maintained by frequent low-severity fires, and hence they are 

“fuel limited.”  Fuel reductions (treatments: thinning, burning, manual and mechanical fuel 
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reduction) are generally successful in maintaining low surface fuels on the dry, east side.  In 

contrast, strategies to maintain moist, dense forests (e.g., reasoned fire exclusion; Halofsky et al. 

2018b) may be appropriate to limit fire size in west-side forests.  These contrasting strategies 

target the different bottom-up controls on fire frequency (fuel loading vs. fuel moisture) for east- 

and west-side forests and adjust for the other top-down controls: climate, which cannot be easily 

manipulated, and topography, which is unchanging.  Given the extensive literature and general 

acceptance of fuel treatments for fire management in drier forests (Raymond and Peterson 2005, 

Prichard et al. 2010), I focus here on a contrasting approach for moist, late-successional forests, 

which accounts for the different controls and how they are influenced by stand structures.  The 

key issue is maintaining high enough fuel moisture, rather than low enough fuel loading. 

The wettest west-side forests (e.g., west side of Olympic National Park and Mount 

Rainier National Park, far west side in low-elevation Douglas-fir forests at North Cascades 

National Park) have the longest fire-return intervals between large stand-replacing fires, not only 

because the weather is not hot and dry enough, or that wind events are rare, but because the 

wettest forests have the steepest fuel-moisture limitations to overcome.  Therefore, management 

strategies that focus on retaining live and dead fuel moisture content by protecting closed, shaded 

canopy conditions are critical to minimize ignition potential and fire spread.  Thinning in these 

forests would not only compromise the ecology and habitat of late-successional forests (Agee 

1993, Franklin and Johnson 2012, Gaines et al. 2022) but also increase flammability.  This 

suggests that “reasoned fire exclusion” (Halofsky et al. 2018b), the management decision to 

suppress wildfires where risks outweigh benefits, is the best strategy to minimize fire potential in 

the wettest, west-side forests.  Not only does reasoned fire exclusion forestall the effects of 
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climate change (Halofsky et al. 2018a), which are uncertain, but it also minimizes fire size, 

maintaining a greater proportion of intact canopy to retain fuel moisture.   

Moist forests with the canopy structures described earlier in the chapter as holding 

moisture longest (e.g., tall, closed, multistory canopies), retain moisture in the canopy and 

understory forest, and also retain moisture in the surface fuel and organic horizons.  Thus, these 

canopy structures, when paired with abundant large (1000-hour) woody fuels, which have the 

greatest moisture holding capacity, will be especially fire resistant.  Forests with deep organic 

horizons will also be less prone to surface fire due to their capacity to hold moisture from the soil 

as well as from the canopy (Zhao et al. 2021).  Hanan et al. (2021) suggest using soil moisture 

data layers as a tool to interpret where soil moisture content is greatest, and thus where fire 

spread potential is lowest.   

Understanding which areas have the greatest moisture-holding capacity is helpful in 

weighing the risks and benefits of managing a wildland fire for resource benefit now or 

suppressing it when it may burn a larger area later at higher severity.  Management fires for 

resource benefit are a good strategy for fires at locations farther east and with moderate fire 

potentials along the fuels management continuum.  Because drier mixed-severity sites are more 

likely to experience more frequent and larger fires sooner than moist forests farther west, 

suppression is a less desirable option. 

In mixed-severity forests that occur between the two extremes of east and west, 

representing almost purely fuel-limited versus flammability-limited forests, a broader range of 

fire management strategies (e.g., managed wildland fires) may apply.  For example, within the 

mixed-severity regime, where fuel loading and fuel moisture are both important factors, smaller 

wildfires that enhance the mosaic of burned areas will maintain higher structural diversity and 
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minimize future fire growth.  Re-igniting previously suppressed fires is another strategy for 

increasing burned footprints within the mixed-severity fire regime that could be particularly 

useful in large wilderness areas (NPS 2010).  Fires that started early in the season and were 

suppressed due to safety concerns or lack of fire personnel to manage them during a busy fire 

season, can be reignited in late summer or early fall to burn a smaller footprint, the boundaries of 

which are created by the topography, fuel moisture, and fuel loadings of the site.   

Some landscapes may require heterogeneous strategies, depending on not only the 

importance of fuel moisture versus fuel loading, but also multiple factors such as essential 

wildlife habitat, vulnerability to severe fire because of topography, or risk to homes or other 

structures.  For example, in the mixed-severity fire regimes of the Stehekin watershed (Chapter 

1), which includes forest stands both near the town and in inaccessible wilderness terrain, 

different management is applied, including wildland fire use in the wilderness away from town, 

thinning and prescribed burning in fuel-reduction treatment areas adjacent to the community, and 

immediate suppression within the wildland-urban interface.  All these tactics can be informed by 

an understanding of the contrasting roles of fuel moisture and fuel loading that I have discussed 

here, and of their relative importance in different microclimates and topography. 

 

3.7 Conclusions  

Several researchers have suggested that the fuel treatments that are effective in dry 

forests are not appropriate for west-side forests in the Northwest (Halofsky et al. 2018b, Gaines 

et al. 2022).  I agree with their reasoning that fuel treatments would create ecosystem changes 

that have no precedent, and I come to the same solution (reasoned suppression in the moist 

forests) but via a different conceptual pathway.  My recommendations are based on the essential 
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differences between the drivers of fuel-limited versus flammability-limited systems.  We cannot 

expect west-side forests to be affected by increases in temperature in the same way as low-

severity fire regimes in east-side forests, because west- and east-side forests have different 

drivers and thresholds.  We also cannot expect to manage them in the same way across different 

fire regimes.  
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Conclusions 

This dissertation is an in-depth analysis of the characteristics associated with mixed- and 

high-severity fires regimes in the Pacific Northwest (PNW), with an emphasis on proposing 

strategies for management with respect to climate change.  Chapter one provides the quantitative 

evidence for high-frequency fire in Stehekin, Lake Chelan National Recreation Area, and 

identifies the bottom-up controls (topography, species, location) influencing a long history of 

mixed-severity fire.  Chapter two provides another detailed analysis; fuel loadings across the 

moist forests of Mount Rainier, characterized by a low frequency, high-severity fire regime.  

Chapter three links chapters one and two together as data points along the precipitation gradient 

from moist, west-side to dry, east-side forests across the PNW, and provides a corresponding 

fuels management continuum.   

This work is a step towards preparing for more frequent and larger fires in the PNW, 

although there is still much to learn about how complex interactions between climate and fire 

regimes will manifest.  The amount and seasonality of future precipitation in the PNW is still 

uncertain, as are the vegetation assemblages following more frequent fires in high- and mixed-

severity fire regimes.  It is critical that researchers and managers focus on collecting empirical 

data on future fires to increase our understanding of fire effects and post-fire regeneration, 

calibrate climate-fire models, and ultimately, fine-tune our management response.  Most 

importantly, the results of future research must be conveyed to the managers that steward federal 

lands across the PNW.  Our jobs are not complete until we make the critical link between 

research and management.   
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Appendix A: The values in italics are imputed from neighboring fuelbeds and the vegetation map (Nielsen et al. 2021).  The fuel 

models are the 13 standard fire behavior fuel models (Albini 1976, Anderson 1982), included for reference.  

 

Fuel Bed ID Plot count Structure Relative Cover of Trees by Species Fuel model

11 23 Woodland 50 ABLA, 25 ABAM, 25 TSME 8

12 4 Woodland 66 ABLA, 34 TSHE 2, 5, 8

13 0 Woodland 4 TSHE, 40 ABAM, 34 TSME, 22 ABLA NA

21 16 Short partly closed forest 31 ABLA, 25 PSME, 19 TSHE, 12 TSME, 7 ABAM, 6 ABPR 8

22 3 Short partly closed forest 33 ABLA, 33 TSHE, 34 ABAM 8

23 2 Short partly closed forest 100 PSME 8

24 1 Short partly closed forest 100 TSME NA

31 8 Short to mid-height multistory 50 ABLA, 25 TSHE, 13 ABAM, ACRU 12 9

32 5 Short to mid-height multistory 20 ABAM, 60 TSHE, 20 ABLA 8

33 7 Short to mid-height multistory 17 ABAM, 33 TSHE, 33 ABLA, 17 TSME 9

34 8 Short to mid-height multistory 25 PSME, 38 TSHE, 25 ABLA, 12 TSME 8

35 3 Short to mid-height multistory 34 PSME, 33 THPL, 33 ABLA 8

41 8 Mid-height partly closed forest 50 ABAM, 25 PSME, 25 TSME 8

42 14 Mid-height partly closed forest 21 ABLA, 7 PSME, 21 CHNO, 22 TSME, 7 ABAM, 7 PIEN, 15 TSHE 8

43 11 Mid-height partly closed forest 9 ALRU, 9 THPL, 18 CHNO, 18 TSHE, 18 ABAM, 18 PIEN, 10 TSME 7, 8, 9

44 6 Mid-height partly closed forest 33 ABAM, 33 ABLA, 17 ABPR, 17 PSME 8

45 1 Mid-height partly closed forest 100 TSME 6, 8

51 21 Tall multistory 25 TSHE, 12 ABLA, 6 ABPR, 20 ABGR, 25 ABAM, 6 ALRU, 6 TSME 8

52 2 Tall multistory 100 ABPR 9, 10

53 4 Tall multistory 50 TSHE, 50 TSME 6, 10, 11

54 0 Tall multistory 10 TSHE, 69 ABAM, 21 TSME NA

55 1 Tall multistory 43 PSME, 50 ABAM, 2 TSME, 5 TSHE 10

61 12 Tall topstory 17 PSME, 42 TSHE, 17 THPL, 8 ABAM, 8 PIEN, 8 TSME 8

62 7 Tall topstory 43 PSME, 43 TSME, 14 ABPR 8

63 1 Tall topstory 100 ABAM 8

64 3 Tall topstory 34 ABLA, 33 TSME, 33 TSHE 8

70 40 Riparian

22 PSME, 20 TSHE, 20 ALRU, 12 THPL, 8  PIEN,  8 POBA, 5 ABAM, 5  

ABLA 2

80 46 Shrubs NA 5

90 5 Meadow NA 1
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Fuel 
Bed 

All Canopy 
Density 

Emergent & Canopy 
Density 

Subcanopy  
Density 

Emergent  
Canopy Cover 

Canopy  
Canopy Cover 

Subcanopy 
Canopy Cover 

Emergent  
Height (ft) 

ID X Min Max X Min Max X Min Max X Min Max X Min Max X Min Max X Min Max 

11 28 2 65 136 10 304 20 0 91 0 0 0 28 2 55 5 0 15 NA NA NA 

12 41 2 100 186 20 273 28 0 111 0 0 0 41 2 85 9 0 35 NA NA NA 

13 31 2 100 146 10 304 21 0 111 0 0 0 31 2 85 5 0 35 NA NA NA 

21 60 10 100 275 61 769 112 0 455 4 0 30 44 10 75 12 0 35 74 74 74 

22 58 40 85 223 50 253 68 0 182 NA NA NA 40 30 50 18 0 35 NA NA NA 

23 95 70 100 23 20 70 34 0 100 NA NA NA 63 60 65 33 10 55 NA NA NA 

24 60 40 80 111 80 130 51 30 70 NA NA NA 50 30 70 10 0 20 NA NA NA 

31 71 40 100 139 20 233 93 10 243 5 0 15 49 40 80 17 0 60 165 136 187 

32 99 50 100 270 40 435 304 30 891 9 0 20 74 45 95 22 5 65 128 119 137 

33 57 27 100 121 20 192 93 0 192 3 0 15 39 0 80 15 0 25 122 122 122 

34 77 35 100 226 132 324 78 0 162 3 0 21 63 35 95 12 0 25 184 184 184 

35 50 35 75 111 71 152 7 0 10 NA NA NA 48 35 70 2 0 5 NA NA NA 

41 60 30 100 155 111 182 25 0 51 NA NA NA 51 30 75 8 0 25 NA NA NA 

42 62 20 100 156 111 243 84 0 405 7 0 50 47 20 80 8 0 25 104 104 104 

43 71 10 100 168 121 253 51 0 142 2 0 10 60 10 85 9 0 20 134 115 153 

44 51 22 75 116 111 121 26 10 51 0 0 0 43 20 60 7 2 15 NA NA NA 

45 38 1 75 56 0 152 10 0 51 NA NA NA 28 0 55 11 1 20 NA NA NA 

51 82 15 100 86 20 213 113 10 516 4 0 35 53 15 90 25 0 60 173 164 182 

52 75 60 90 48 20 213 67 5 100 NA NA NA 43 40 45 33 20 45 NA NA NA 

53 62 40 75 99 20 151 53 35 91 3 0 10 40 35 65 19 10 25 117 117 117 

54 77 30 100 82 20 213 94 5 350 3 0 35 49 15 90 24 0 60 154 117 182 

55 40 30 50 20 20 151 71 5 200 NA NA NA 20 15 25 20 15 25 NA NA NA 

61 79 30 100 103 30 253 40 0 152 8 0 70 63 40 95 8 0 20 162 162 162 

62 90 56 100 105 40 162 16 0 30 4 0 15 75 55 92 11 1 25 187 148 226 

63 62 50 80 100 30 170 10 0 30 NA NA NA 60 50 80 2 0 10 NA NA NA 

64 83 45 100 127 121 132 208 61 354 17 0 30 55 35 85 12 10 15 NA NA NA 

70 65 0 100 123 0 294 111 0 850 2 0 30 51 0 90 12 0 45 167 126 201 

80 1 0 9 2 0 40 1 0 30 0 0 0 0 0 9 0 0 5 NA NA NA 

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NA NA NA 
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Fuel 
Bed 

Canopy  
Height (ft) 

Subcanopy  
Height (ft) 

Emergent  
Ht. Live Crown (ft) 

Canopy 
 Ht. Live Crown (ft) 

Subcanopy  
Ht. Live Crown (ft) 

Emergent 
DBH (in) 

Canopy  
DBH (in) 

ID X Min Max X Min Max X Min Max X Min Max X Min Max X Min Max X Min Max 

11 57 22 101 27 18 43 NA NA NA 10 0 30 4 1 8 NA NA NA 15 6 33 

12 73 65 82 32 5 64 NA NA NA 14 9 19 4 0 8 NA NA NA 17 14 20 

13 60 22 101 27 5 64 NA NA NA 10 0 30 4 0 8 NA NA NA 15 6 33 

21 62 35 98 30 18 39 35 35 35 17 3 35 13 2 23 33 14 47 13 6 24 

22 61 53 69 25 20 30 NA NA NA 23 18 29 6 0 10 NA NA NA 13 10 15 

23 91 80 120 26 5 79 NA NA NA 10 0 15 6 0 14 NA NA NA 17 11 23 

24 96 70 110 33 19 46 NA NA NA 23 0 33 11 4 18 NA NA NA 17 11 23 

31 88 45 122 31 15 55 57 37 74 38 31 48 14 4 24 47 34 59 16 6 25 

32 97 78 107 34 26 45 55 51 60 67 40 112 22 14 31 46 36 57 18 11 30 

33 88 46 129 28 23 37 49 49 49 41 27 54 15 9 24 44 36 49 17 9 25 

34 80 47 126 28 23 38 100 100 100 36 8 58 13 6 17 52 52 52 15 11 29 

35 118 73 176 19 5 25 NA NA NA 30 9 50 10 6 14 NA NA NA 35 17 58 

41 95 67 136 35 18 64 NA NA NA 35 20 54 13 6 18 NA NA NA 20 12 36 

42 87 36 112 33 20 46 26 26 26 41 3 64 16 1 26 43 24 55 18 9 30 

43 93 36 136 36 20 60 54 47 62 42 17 62 16 5 44 46 30 56 19 9 28 

44 91 79 104 37 27 44 NA NA NA 22 15 35 12 6 25 NA NA NA 19 15 21 

45 96 79 104 33 19 46 NA NA NA 23 15 35 11 4 18 NA NA NA 25 18 39 

51 119 59 181 47 21 76 83 51 114 50 16 118 19 3 35 46 39 57 25 7 56 

52 177 162 192 49 35 63 NA NA NA 59 44 74 13 10 16 NA NA NA 49 41 57 

53 93 87 103 34 27 49 63 51 80 45 35 56 22 10 34 48 39 57 24 18 39 

54 121 59 192 46 21 78 76 49 114 51 16 118 20 3 35 46 39 57 28 7 57 

55 128 87 192 78 27 86 NA NA NA 80 16 118 33 10 35 NA NA NA 76 41 80 

61 139 84 185 61 31 106 83 83 83 74 42 114 23 10 52 45 36 54 26 11 45 

62 114 55 149 45 33 55 56 12 101 74 49 107 30 23 39 60 47 77 24 15 32 

63 129 60 200 45 30 59 NA NA NA 58 28 100 7 0 39 NA NA NA 31 20 45 

64 147 80 200 26 10 79 NA NA NA 19 10 100 8 0 59 50 48 52 20 9 36 

70 99 0 184 35 0 73 69 0 122 36 0 83 13 0 40 45 31 67 20 3 76 

80 NA NA NA 0 0 22 NA NA NA NA NA NA 0 0 2 NA 0 0 12 3 41 

90 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 0 NA 0 0 
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Fuel 
Bed 

Subcanopy  
DBH (in) 

Organic Fuel  
Depth (in) 

Organic Fuel  
tons/acre 

Small Woody Fuel 
tons/acre 

Large Woody Fuel 
tons/acre 

ID X Min Max X Min Max Med X Min Max Med X Min Max Med X Min Max 

11 7 5 12 3.2 0 7.2 L 9.5 0 23 F 2.8 0 17 L  1.3 0 10 

12 3 2 13 13 7.3 53 H 40 23 158 F 2.8 0 17 L 1.3 0 10 

13 7 2 13 7.2 0 53 F 23 0 158 F 2.8 0 17 H 38 10 228 

21 5 3 10 3.2 0 7.2 L 9.5 0 23 F 2.8 0 17 L 1.3 0 10 

22 4 2 5 13 7.3 53 H 40 23 158 F 2.8 0 17 L 1.3 0 10 

23 4 3 5 3.2 0 7.2 L 9.5 0 23 F 2.8 0 17 H 38 10 228 

24 6 3 10 13 7.3 53 H 40 23 158 F 2.8 0 17 H 38 10 228 

31 5 3 8 13 7.3 53 H 40 23 158 L 1.2 0 2.8 F 11 0 22 

32 5 4 8 13 7.3 53 H 40 23 158 H 4.8 2.9 17 H 38 10 228 

33 5 3 8 3.2 0 7.2 L 9.5 0 23 L 1.2 0 2.8 F 11 0 22 

34 5 4 7 7.2 0 53 F 23 0 158 F 2.8 0 17 L 1.3 0 10 

35 5 4 6 3.2 0 7.2 L 9.5 0 23 H 4.8 2.9 17 H 38 10 228 

41 7 4 15 7.2 0 53 F 23 0 158 H 4.8 2.9 17 L 1.3 0 10 

42 5 3 9 3.2 0 7.2 L 9.5 0 23 F 2.8 0 17 H 38 10 228 

43 7 4 12 13 7.3 53 H 40 23 158 F 2.8 0 17 H 38 10 228 

44 8 6 11 3.2 0 7.2 L 9.5 0 23 L 1.2 0 2.8 L 1.3 0 10 

45 8 7 9 13 7.3 53 H 40 23 158 F 2.8 0 17 L 1.3 0 10 

51 8 3 13 13 7.3 53 H 40 23 158 L 1.2 0 2.8 F 11 0 22 

52 9 6 12 13 7.3 53 H 40 23 158 H 4.8 2.9 17 F 11 0 22 

53 6 4 7 3.2 0 7.2 L 9.5 0 23 L 1.2 0 2.8 F 11 0 22 

54 8 3 13 3.2 0 7.2 L 9.5 0 23 H 4.8 2.9 17 F 11 0 22 

55 14 6 40 3.2 0 7.2 L 9.5 0 23 H 4.8 2.9 17 H 38 10 228 

61 8 2 15 7.2 0 53 F 23 0 158 L 1.2 0 2.8 H 38 10 228 

62 6 4 10 7.2 0 53 F 23 0 158 H 4.8 2.9 17 H 38 10 228 

63 12 4 19 7.2 0 53 F 23 0 158 H 4.8 2.9 17 L 1.3 0 10 

64 4 3 6 3.2 0 7.2 L 9.5 0 23 F 2.8 0 17 F 11 0 22 

70 5 2 12 7.2 0 53 F 23 0 158 F 2.8 0 17 H 38 10 228 

80 6 3 9 7.2 0 53 F 23 0 158 L 1.2 0 2.8 F 11 0 22 

90 NA 0 0 19 13 53 VH 55 33 158 L 1.2 0 2.8 L 1.3 0 10 
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